
近期有网上朋友寻求帮助:如何通过脚本动态控制Linux系统的内存占用百分比?经过一番百度+编写调试,终于初步完成了动态控制Linux系统内存占用百分比。现写出来以帮助更多的朋友。
1 前言
根据需求是动态控制Linux系统内存占用百分比,比如当前内存占用30%,如果设置内存占用为70%,则需要申请内存使达到占用70%;如果再降低到40%,则需要释放部分申请的内存。其实脚本的本质是内存动态申请与释放。
注意:因为Python脚本运行之前内存有一定占用,故设定内存占用不能低于该百分比。
2 内存动态申请
通过查询资料,使用Python动态申请内存块,可以使用ctypes包中的函数,导入包及代码如下所示:
>>> from ctypes import
>>> mem=create_string_buffer(1024)
说明:内存申请使用create_string_buffer()函数,上面申请了1024字节的内存块。
下面演示申请100MB内存前后变化
申请前如下图所示:
使用代码如下:
>>>mem=create_string_buffer(104857600)
申请后如下图所示:
从上述两幅图中可以看出,申请内存前内存占用295MB,申请后内存占用397MB,增加了约100MB内存占用。
3 内存动态释放
由于Python对内存是有垃圾回收机制的,采用对象引用计数方式。当对象的引用计数为0时,启动垃圾回收GC。此处内存动态释放就是使用该原理。
代码如下:
>>> mem=None
释放后内存占用如下图所示:
内存占用由397MB降低到297MB,释放了100MB内存占用。
说明:将None赋值给对象mem后,mem对象的引用计数即为0,此时垃圾回收启动,释放mem对象占用的内存。
4 系统总内存、占用内存检测
由于需要设定内存占用百分比,故需要获取系统总物理内存和占用内存。本文使用的方法是读取系统文件“/proc/meminfo”,从中解析出总内存大小以及当前内存占用大小等内存相关的信息。该文件内容格式如下图所示:
代码片段如下所示:
f = open("/proc/meminfo")
lines = freadlines()
fclose()
for line in lines:
if len(line)< 2:continue
name = linesplit(':')[0]
var = linesplit(':')[1]split()[0]
mem[name]= long(var) 10240
mem['MemUsed']= mem['MemTotal']- mem['MemFree']
说明:按行读取meminfo文件内容,创建字典对象mem,将meminfo文件第一列设置为mem对象的键值,将meminfo文件第二列数字设置为mem对象的值。
5 获取用户输入百分比
通过读取键盘输入字符串,然后转换为数字实现接收用户输入的百分比,代码如下所示:
input_str=raw_input("Input UsedMemory`s Rate or q to exit:")
rate=float(input_str)
注意:此处键盘输入的都是字符串,需要进行字符串转换为数字,使用float()或long()函数进行转换。
6 动态设置内存占用百分比测试
测试使用两个Python脚本文件,分别是testpy和mem_ratepy,其功能分别是查看当前内存占用和动态设定内存占用百分比。如下图所示:
注意:上述两个文件需要使用“chmod +x py”修改为可执行属性。
61 查看当前内存占用
查看当前内存占用百分比,使用上述testpy文件,运行命令为“/testpy”,运行结果如下图所示:
当前使用内存为320MB,占用百分比为17%。
62 动态设置内存占用百分比
动态设置内存占用百分比使用上述mem_ratepy脚本,注意该脚本文件第一行代码为“#!/usr/bin/python26”,表示该脚本使用python26程序运行。该行需要修改为待运行Linux系统中Python实际的安装程序路径。
动态内存百分比设置界面如下图所示:
处于待输入状态。另外显示了当前内存占用(321MB),总内存大小(1869MB)以及内存占用百分比(17%)。
如果此时设置内存占用百分比为80%,则脚本会每次申请10MB空间,直至内存占用接近或等于80%为止。如下图所示:
内存申请过程如下图所示:
内存申请过程中占用百分比变化为:35%,45%,56%,70%,…
mem_ratepy运行过程如下图所示:
内存申请过程中占用变化为:1461MB,1471MB,1481MB,1491MB。
此时如果内存占用百分比设置为20%,则需要释放一部分内存。
testpy脚本运行过程如下图所示:
由于释放内存运行较快,抓取到最后结果
内存占用为20%。
mem_ratepy脚本运行过程如下图所示:
内存释放过程中内存占用为:413MB,403MB,393MB,383MB,最后内存占用稳定在20%,383MB。
输入“q”或“Q”退出内存占用百分比设定过程,如下图所示:
此时内存占用如下图所示:
内存占用恢复到运行mem_ratepy脚本之前状态,17%,321MB。
※※※※※※※※※※※※※※※※※※※※※※※※※※※※※
附:完整Python脚本代码
testpy
------------------------------------------------------------------------------------------------
#!/usr/bin/python26
def memory_stat():
mem = {}
f = open("/proc/meminfo")
lines = freadlines()
fclose()
for line in lines:
if len(line)< 2:continue
name = linesplit(':')[0]
var = linesplit(':')[1]split()[0]
mem[name]= long(var) 10240
mem['MemUsed']= mem['MemTotal']- mem['MemFree']
# - mem['Buffers']- mem['Cached']
return mem
mem=memory_stat()
print("Used(MB):%d"%(long(mem['MemUsed'])/1024/1024))
print("Rate:%d%%"%(100long(mem['MemUsed'])/float(mem['MemTotal'])))
§§§§§§§§§§§§§§§§§§§§§§§§§§
mem_ratepy
---------------------------------------------------
#!/usr/bin/python26
from ctypes import
# Get Memory Info(Total, Used Byte)
def get_memory_stat():
mem = {}
f = open("/proc/meminfo")
lines = freadlines()
fclose()
for line in lines:
if len(line)< 2:continue
name = linesplit(':')[0]
var = linesplit(':')[1]split()[0]
mem[name]= long(var) 10240
mem['MemUsed']= mem['MemTotal']- mem['MemFree']
# Return MemroyInfo Object
return mem
# Get Simple Memory Info
def get_memory_info(mem):
# Byte -> MB
n=1024 1024
used=float(mem['MemUsed'])/ n
total=float(mem['MemTotal'])/ n
rate=used/total 100
smp={'used':used,'total':total,'rate':rate}
return smp
# Display Current Memory Info
def print_memory_info(mem):
# Get SimpleMemory Info
smp=get_memory_info(mem)
print("Used(MB):%d\tTotal(MB):%d\tUsedRate:%d%%"%(smp['used'], smp['total'], smp['rate']))
# Get Rate Of Memory Used To Be Setted(Integer Formate)
def input_memory_used_rate(org_rate):
# Byte -> MB
n=1024 1024
while(True):
mem=get_memory_stat()
print_memory_info(mem)
input_str=raw_input("Input UsedMemory`s Rate or q to exit:")
if(len(input_str)== 0):
continue
if("q"== input_str):
info={'rate':0,'used':mem['MemUsed']/ n}
return info
if("Q"== input_str):
info={'rate':0,'used':mem['MemUsed']/ n}
return info
try:
rate=float(input_str)
if((rate>=org_rate)and (rate<=95)):
info={'rate':rate,'used':mem['MemUsed']/ n}
return info
else:
print("Please inputa valid number(%d%%~95%%)"%(org_rate))
except:
print("Please inputa valid number(%d%%~95%%)"%(org_rate))
# Set Rate Of Memory Used
def set_memory_used_rate(new_rate, total, pre_used,list):
if(new_rate==0):
return None
dest_mem=total new_rate /1000
# 10MB
mb10=10485760
n_chg=10
# Free Memory OrAllocate Memory
is_new=dest_mem>pre_used
cur_used=pre_used
while(True):
# To Calc FreeMemory Or Allocate Memory
need_new=dest_mem-n_chg>=pre_used
need_del=dest_mem+n_chg<=pre_used
# Need To AllocateMemory
if(is_new):
if(need_new):
p=create_string_buffer(mb10)
listappend(p)
dest_mem=dest_mem-n_chg
cur_used=cur_used+n_chg
else:
return"end"
# Need To FreeMemory
else:
idx=len(list)-1
if(need_deland (idx>=0)):
p=list[idx]
del list[idx]
p=None
dest_mem=dest_mem+n_chg
cur_used=cur_used-n_chg
else:
return"end"
print(" MemoryUsed(MB):%d"%(cur_used))
# Entry Of Program
# List Of Memory Object, 10MB Of One Object
list=[]
# Get Current Memory Info
mem=get_memory_stat()
# Get Simple Memory Info
smp=get_memory_info(mem)
org_rate=smp['rate']
total=smp['total']
while(True):
# Get Rate OfMemory To Be Used
info=input_memory_used_rate(org_rate)
new_rate=float(info['rate'])
pre_used=float(info['used'])
# Set Rate OfMemory To Be Used
rtn=set_memory_used_rate(new_rate, total, pre_used, list)
if(not rtn):
print("bye!")
exit()
1
2
s = 'abc'
print sysgetsizeof(s)
如果你要监测所有的变量,可以用python的smiley 模块监测所有的内存变量情况
最大能用多大内存是 *** 作系统的限制,跟python没有直接关系,因为python是没有限制的。
ABC是由Guido参加设计的一种教学语言。就Guido本人看来,ABC 这种语言非常优美和强大,是专门为非专业程序员设计的。但是ABC语言并没有成功,究其原因,Guido 认为是其非开放造成的。Guido 决心在Python 中避免这一错误。同时,他还想实现在ABC 中闪现过但未曾实现的东西。
扩展资料:
一个和其他大多数语言(如C)的区别就是,一个模块的界限,完全是由每行的首字符在这一行的位置来决定的(而C语言是用一对花括号{}来明确的定出模块的边界的,与字符的位置毫无关系)。这一点曾经引起过争议。
因为自从C这类的语言诞生后,语言的语法含义与字符的排列方式分离开来,曾经被认为是一种程序语言的进步。不过不可否认的是,通过强制程序员们缩进(包括if,for和函数定义等所有需要使用模块的地方),Python确实使得程序更加清晰和美观。
参考资料来源:百度百科-Python
python 怎么在循环中释放内存 #include"stdioh" main() { char st[15]; printf("input string:\n"); gets(st); puts(st); }
pip install memory_profiler
pip install psutil
pip install matplotlib
使用方法
from memory_profiler import profile
@profile(precision=4, stream=open('testlog', 'w+'))
def test(args: List):
运行:
python3 testpy
Mem usage:表示执行该行后Python解释器的内存使用情况
Increment:表示当前行的内存相对于上一行的差异,即自己本身增长了多少,如果减少了则不显示
以上就是关于如何使用Python动态控制Linux系统的内存占用百分比全部的内容,包括:如何使用Python动态控制Linux系统的内存占用百分比、请教各位牛人,python中有没有计算某个对象占用内存大小的函数、python 最大能用多大内存等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)