
有六种:
1定义法。
2垂面法。
3射影定理。
4三垂线定理。
5向量法。
6转化法。
扩展资料:
三垂线定理:
在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
三垂线定理的逆定理:在平面内的一条直线,如果和穿过这个平面的一条斜线垂直,那么它也和这条斜线在平面的射影垂直。
1、三垂线定理描述的是PO(斜线),AO(射影),a(直线)之间的垂直关系。
2、a与PO可以相交,也可以异面。
3、三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理。
关于三垂线定理的应用,关键是找出平面(基准面)的垂线。至于射影则是由垂足,斜足来确定的,因而是第二位的。从三垂线定理的证明得到证明a⊥b的一个程序:一垂,二射,三证。即几何模型
第一,找平面(基准面)及平面垂线;
第二,找射影线,这时a,b便成平面上的一条直线与一条斜线;
第三,证明射影线与直线a垂直,从而得出a与b垂直。
1定理中四条线均针对同一平面而言;
2应用定理关键是找"基准面"这个参照系。
用向量证明三垂线定理。
1已知:PO,PA分别是平面a的垂线,斜线,OA是PA在a内的射影,b属于a,且b垂直OA,求证:b垂直PA
证明:因为PO垂直a,所以PO垂直b,又因为OA垂直b向量PA=(向量PO+向量OA)
所以向量PA乘以b=(向量PO+向量OA)乘以b=(向量PO乘以b)加(向量OA乘以b)=O,
所以PA垂直b。
2已知:PO,PA分别是平面a的垂线,斜线,OA是PA在a内的射影,b属于a,且b垂直PA,求证:b垂直OA
证明:因为PO垂直a,所以PO垂直b,又因为PA垂直b,向量OA=(向量PA-向量PO)
所以向量OA乘以b==(向量PA-向量PO)乘以b=(向量PA乘以b)减(向量PO乘以b)=0,
所以OA垂直b。
3已知三个平面OAB,OBC,OAC相交于一点O,角AOB=角BOC=角COA=60度,求交线OA于平面OBC所成的角。
向量OA=(向量OB+向量AB),O是内心,又因为AB=BC=CA,所以OA于平面OBC所成的角是30度。
根据算符▽的微分形与矢量形,推导下列公式:▽(A·B)=B×(▽×A)+(B·▽)A+A×(▽×B)+(A·▽)B,A×(▽×A)=▽A2/2-(A·▽)A。
设u是空间坐标x,y,z的函数,证明:▽f(u)=df/du▽u,▽·A(u)= ▽u·dA/du,▽×A(u)= ▽u×dA/du。
设r=√[(x-x’)2+(y-y’)2+(z-z’)2]为源点x’到场点x的距离,r的方向规定为从源点指向场点。应用高斯定理证明∫vdV×f=∮sdS×f,应用斯托克斯定理证明∫sdS×▽ψ=∮Ldlψ。
含义
该定理经常用于M是嵌入到某个定义了ω的更大的流形中的子流形的情形。定理可以简单的推广到分段光滑的子流形的线性组合上。斯托克斯定理表明相差一个恰当形式的闭形式在相差一个边界的链上的积分相同。这就是同调群和德拉姆上同调可以配对的基础。
在命题逻辑归结原理的推理图式中,P、Q和R称为原子公式(简称原子),即不使用逻辑连接词的简单命题形式。原子和原子的否定式统称句元,例如P与塡P、Q与塡Q、R与塡R即是三对互补句元。子句就是将不同句元用析取词∨(或)连接而成的析取式。应用归结法则进行推理时,所有判断都写成子句的形式,这不论对命题逻辑还是对一阶谓词逻辑都不例外。
在命题逻辑中,原子被看成一个内部结构不予分析的逻辑基元,代表简单的命题形式。单凭普通形式逻辑中充分条件的假言联锁推理的符号化,只能直接演变为命题逻辑的归结原理。51cto学院可以进行人工智能学习,命题逻辑的归结原理或归结法则可归纳如下:对任意两个子句H1和H2,如果H1和H2中各自包含一个互补的句元L1和L2(例如上述图式中的Q和塡Q),则可以删去L1和L2,并将原来的子句H1与H2归结为删去互补句元后两子句余下部分的析取式C。C也以子句形式出现,称为原来两子句(常称为亲子句)的一个归结式例如图式中塡P∨R即为塡P∨Q与塡Q∨R两子句的一个归结式。归结原理或归结法则即因此得名。
所有的证明都包含了一些数学分析,至少是实数或复数函数的连续性概念。有些证明也用到了可微函数,甚至是解析函数。
定理的某些证明仅仅证明了任何实系数多项式都有复数根。这足以推出定理的一般形式,这是因为,给定复系数多项式p(z),以下的多项式
就是一个实系数多项式,如果z是q(z)的根,那么z或它的共轭复数就是p(z)的根。
许多非代数证明都用到了“增长引理”:当|z|足够大时,首系数为1的n次多项式函数p(z)的表现如同z。一个更确切的表述是:存在某个正实数R,使得当|z| > R时,就有: 证明一
寻找一个中心为原点,半径为r的闭圆盘D,使得当|z| ≥ r时,就有|p(z)| > |p(0)|。因此,|p(z)|在D内的最小值(一定存在,因为D是紧致的),是在D的内部的某个点z0取得,但不能在边界上取得。于是,根据最小模原理,p(z0) = 0。也就是说,z0是p(z)的一个零点(根)。
证明二
由于在D之外,有|p(z)| > |p(0)|,因此在整个复平面上,|p(z)|的最小值在z0取得。如果|p(z0)| > 0,那么1/p在整个复平面上是有界的全纯函数,这是因为对于每一个复数z,都有|1/p(z)| ≤ |1/p(z0)|。利用刘维尔定理(有界的整函数一定是常数),可知1/p是常数,因此p是常数。于是得出矛盾,所以p(z0) = 0。
证明三
这个证明用到了辐角原理。设R为足够大的正实数,使得p(z)的每一个根的绝对值都小于R;这个数一定存在,因为n次多项式函数最多有n个根。对于每一个r > R,考虑以下的数:
其中c(r)是中心为0,半径为r的逆时针方向的圆;于是辐角原理表明,这个数是p(z)在中心为0、半径为r的开圆盘内的零点的数目N,由于r > R,所以它也是p(z)的零点的总数目。另一方面,n/z沿着c(r)的积分除以2πi,等于n。但这两个数的差为:
被积分的有理表达式中的分子,次数最多是n 1,而分母的次数是n + 1。因此,当r趋于+∞时,以上的数趋于0。但这个数也等于N n,因此有N = n。
证明四
这个证明结合了线性代数和柯西积分定理。为了证明每一个n > 0次复系数多项式都有一个根,只需证明每一个方块矩阵都有一个复数特征值。证明用到了反证法。
设A为大小n > 0的方块矩阵,并设In为相同大小的单位矩阵。假设A没有特征值。考虑预解函数
它在复平面上是亚纯函数,它的值位于矩阵的向量空间内。A的特征值正好是R(z)的极点。根据假设,A没有特征值,因此函数R(z)是整函数,根据柯西积分定理可知:
另一方面,把R(z)展开为几何级数,可得:
这个公式在半径为||A||的闭圆盘的外部(A的算子范数)成立。设r > ||A||。那么:
(仅当k = 0时,积分才不等于零)。于是得出矛盾,因此A一定有一个特征值。 设z0 ∈ C为使|p(z)|在z0取得最小值的数; 从用到刘维尔定理的证明中,可以看到这样一个数一定存在。我们可以把p(z)写成z z0的多项式:存在某个自然数k和一些复数,使得,以及:
可推出如果a是的一个k重根,且t是足够小的正数,那么|p(z0 + ta)| < |p(z0)|,这是不可能的,因为|p(z0)|是|p|在D内的最小值。
对于另外一个用到反证法的拓扑学证明,假设p(z)没有根。选择一个足够大的正数R,使得对于|z| = R,p(z)的第一项z大于所有其它的项的和;也就是说,|z| > |an 1z + ··· + a0|。当z依逆时针方向绕过方程为|z| = R的圆一次时,p(z),像z那样,依逆时针方向绕过零n次。在另外一个极端,|z| = 0时,“曲线” p(z)仅仅是一个(非零的)点p(0),它的卷绕数显然是0。如果z所经过的回路在这两个极端中被连续变形,那么p(z)的路径也连续变形。我们可以把这个变形记为,其中t大于或等于0,而小于或等于1。如果我们把变量t视为时间,那么在时间为零时,曲线为p(z),时间为1时,曲线为p(0)。显然在每一个点t,根据原先的假设p(z)都不能是零,因此在变形的过程中,曲线一直都没有经过零。因此曲线关于0的绕数应该不变。然而,由于绕数在一开始是n,结束时是0,因此得出矛盾。所以,p(z)至少有一个根。 这个证明需要依赖实数集的如下事实:正实数R在上有实平方根,以及任何奇次多项式在上有一个根(这可以用介值定理证明)。
首先。经过简单的计算可以证明在开平方运算下是封闭的(利用事实1)。结合。得出不存在二阶扩张。
由于,于是任何的扩张都是可分的,从而任何的代数扩张都可以被包含在一个伽罗瓦扩张内。假设是一个伽罗瓦扩张。考虑伽罗瓦群的西罗2-子群H。那么是奇数。由本原元定理得出,K存在本原元,它的极小多项式是奇次的。但是利用实数集的事实2,任何奇次数多项式在实数上有一个根,于是不存在奇次的且次数>1的不可约多项式。于是是2的幂次。
假设并且r>0,再次利用西罗定理,G存在一个阶为2的子群N。这时。这和先前不存在二阶扩张矛盾。因此的任何代数扩张都是本身,代数基本定理得证。
以上就是关于立体几何常用证明定理高中的。全部的内容,包括:立体几何常用证明定理高中的。、怎么证明斯托克斯定理、简述归结原理证明定理的步骤等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)