
网络结构:前面的是线性层+sigmoid激活层,最后一层是Softmax层
Softmax的公式为如下:
Softmax的损失函数-YlogY_pred
code
import numpy as np y = np.array([1,0,0]) z = np.array([0.2,0.1,-0.1]) y_pred = np.exp(z)/np.exp(z).sum() loss = (-y*np.log(y_pred)).sum() print(loss)
torch自带交叉熵损失API,在最后一层线性层后就不要做激活。
code
import torch
criterion = torch.nn.CrossEntropyLoss()
Y=torch.LongTensor([2,0,1])
y_pred1=torch.Tensor([[0.1,0.2,0.9],
[1.1,0.1,0.2],
[0.2,2.1,0.1]])
y_pred2=torch.Tensor([[0.8,0.2,0.3],
[0.2,0.3,0.5],
[0.2,0.2,0.5]])
loss1 = criterion(y_pred1,Y)
loss2 = criterion(y_pred2,Y)
print('loss1=',loss1,'nloss2=',loss2)
图像数据如何转化为向量
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-z1EHCsAs-1644032532692)(https://gitee.com/chenhao_ANTHONY/mapdepot1/raw/master/img/202202051006838.png)]
该图像的每一个像素点是0-255的一个数值,像素越暗,数值越小,将这些数值/255,归一化到[0,1]区间,0表示黑,1表示白,得到一个28*28的矩阵
交叉熵包含:
Softmax:即 数值/(数值和)
log:对得到的分数占比x计算 e^x
-YlogY_pred:带入公式计算,求和得到loss
code:
import numpy as np
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
batch_size = 64
transform = transforms.Compose([
transforms.ToTensor(), #将图像转为tensor向量,且取值为0-1
transforms.Normalize((0.1307,),(0.3081,)) #第一个是均值,第二个是标准差,需要提前算出,这两个参数都是mnist的
])
train_dataset = datasets.MNIST(root='../dataset/mnist',
train = True,
download=True,
transform=transform)
train_loader = DataLoader(train_dataset,
shuffle=True,
batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist',
train = False,
download=True,
transform=transform)
test_loader = DataLoader(test_dataset,
shuffle=False,
batch_size=batch_size)
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.linear1 = torch.nn.Linear(784,512)
self.linear2 = torch.nn.Linear(512,256)
self.linear3 = torch.nn.Linear(256,128)
self.linear4 = torch.nn.Linear(128,64)
self.linear5 = torch.nn.Linear(64,10)
def forward(self,x):
x = x.view(-1,784) #-1表示代码会自动运算,当输入N张图片时,系统会将像素/784得到N
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = F.relu(self.linear3(x))
x = F.relu(self.linear4(x))
x = self.linear5(x) #最后一层要接入softmax 所以不做激活
return x
model = Net()
#交叉熵包含 softmax 再求对数
criterion = torch.nn.CrossEntropyLoss()
#momentum表示
optimizer = optim.SGD(model.parameters(),lr=0.01,momentum=0.5)
def train(epoch):
running_loss = 0.0
for batch_idx,data in enumerate(train_loader,0):
inputs,target = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs,target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d,%5d] loss: %.3f'%(epoch+1, batch_idx+1, running_loss/300))
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad(): #接下来的代码块中不会计算梯度
for data in test_loader:
images,labels = data
outputs = model(images)
#dim=0 表示列的下标和最大值,dim=1 表示行的下标和最大值
_,predicted = torch.max(outputs.data,dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('labels:',labels,'noutputs:',outputs,'n_:',_,'npredicted:',predicted)
print('Accuracy on test set:%d %%'%(100*correct/total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)