
- 一、SparkStreaming 概述
- 二、Dstream 入门
- 1、WordCount 案例实 ***
- 三、DStream 创建
- 1、RDD 队列
- 2、自定义数据源
- 3、Kafka 数据源
- 四、DStream 转换
- 1、无状态转化 *** 作
- 1.1、Transform
- 1.2、 join
- 2、有状态转化 *** 作
- 2.1、 UpdateStateByKey
- 2.2、WindowOperations
- 五、DStream 输出
- 六、优雅关闭
- 七、SparkStreaming 案例实 ***
- 1、需求一:广告黑名单
- 2、需求二:广告点击量实时统计
- 3、需求三:最近一小时广告点击量
Spark Streaming 用于流式数据的处理。Spark Streaming 支持的数据输入源很多,例如:Kafka、Flume、Twitter、ZeroMQ 和简单的 TCP 套接字等等。数据输入后可以用 Spark 的高度抽象原语如:map、reduce、join、window 等进行运算。而结果也能保存在很多地方,如 HDFS,数据库等
Spark Streaming 的特点:
- 易用
- 容错
- 易整合到 Spark 体系
Spark Streaming 架构
二、Dstream 入门 1、WordCount 案例实 ***整体架构图
SparkStreaming 架构图
添加依赖
org.apache.spark spark-streaming_2.123.0.0
编写代码
package com.atguigu.bigdata.spark.streaming
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}
object SparkStreaming01_WordCount {
def main(args: Array[String]): Unit = {
// TODO 创建环境对象
// StreamingContext创建时,需要传递两个参数
// 第一个参数表示环境配置
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
// 第二个参数表示批量处理的周期(采集周期)
val ssc = new StreamingContext(sparkConf, Seconds(3))
// TODO 逻辑处理
// 获取端口数据
val lines: ReceiverInputDStream[String] = ssc.socketTextStream("localhost", 9999)
val words = lines.flatMap(_.split(" "))
val wordToOne = words.map((_,1))
val wordToCount: DStream[(String, Int)] = wordToOne.reduceByKey(_+_)
wordToCount.print()
// 由于SparkStreaming采集器是长期执行的任务,所以不能直接关闭
// 如果main方法执行完毕,应用程序也会自动结束。所以不能让main执行完毕
//ssc.stop()
// 1. 启动采集器
ssc.start()
// 2. 等待采集器的关闭
ssc.awaitTermination()
}
}
三、DStream 创建
1、RDD 队列
测试过程中,可以通过使用ssc.queueStream(queueOfRDDs)来创建 DStream,每一个推送到这个队列中的 RDD,都会作为一个 DStream 处理。
package com.atguigu.bigdata.spark.streaming
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import scala.collection.mutable
object SparkStreaming02_Queue {
def main(args: Array[String]): Unit = {
// TODO 创建环境对象
// StreamingContext创建时,需要传递两个参数
// 第一个参数表示环境配置
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
// 第二个参数表示批量处理的周期(采集周期)
val ssc = new StreamingContext(sparkConf, Seconds(3))
val rddQueue = new mutable.Queue[RDD[Int]]()
val inputStream = ssc.queueStream(rddQueue,oneAtATime = false)
val mappedStream = inputStream.map((_,1))
val reducedStream = mappedStream.reduceByKey(_ + _)
reducedStream.print()
ssc.start()
for (i <- 1 to 5) {
rddQueue += ssc.sparkContext.makeRDD(1 to 300, 10)
Thread.sleep(2000)
}
ssc.awaitTermination()
}
}
------------------------------------------- Time: 1539075280000 ms ------------------------------------------- (4,60) (0,60) (6,60) (8,60) (2,60) (1,60) (3,60) (7,60) (9,60) (5,60) ------------------------------------------- Time: 1539075284000 ms ------------------------------------------- (4,60) (0,60) (6,60) (8,60) (2,60) (1,60) (3,60) (7,60) (9,60) (5,60) ------------------------------------------- Time: 1539075288000 ms ------------------------------------------- (4,30) (0,30) (6,30) (8,30) (2,30) (1,30) (3,30) (7,30) (9,30) (5,30) ------------------------------------------- Time: 1539075292000 ms -------------------------------------------2、自定义数据源
需要继承 Receiver,并实现 onStart、onStop 方法来自定义数据源采集
自定义数据源:
package com.atguigu.bigdata.spark.streaming
import java.util.Random
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.dstream.ReceiverInputDStream
import org.apache.spark.streaming.receiver.Receiver
import org.apache.spark.streaming.{Seconds, StreamingContext}
import scala.collection.mutable
object SparkStreaming03_DIY {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
val ssc = new StreamingContext(sparkConf, Seconds(3))
val messageDS: ReceiverInputDStream[String] = ssc.receiverStream(new MyReceiver())
messageDS.print()
ssc.start()
ssc.awaitTermination()
}
class MyReceiver extends Receiver[String](StorageLevel.MEMORY_ONLY) {
private var flg = true
override def onStart(): Unit = {
new Thread(new Runnable {
override def run(): Unit = {
while ( flg ) {
val message = "采集的数据为:" + new Random().nextInt(10).toString
store(message)
Thread.sleep(500)
}
}
}).start()
}
override def onStop(): Unit = {
flg = false;
}
}
}
使用自定义的数据源采集数据:
object FileStream {
def main(args: Array[String]): Unit = {
//1.初始化 Spark 配置信息
val sparkConf = new SparkConf().setMaster("local[*]")
.setAppName("StreamWordCount")
//2.初始化 SparkStreamingContext
val ssc = new StreamingContext(sparkConf, Seconds(5))
//3.创建自定义 receiver 的 Streaming
val lineStream = ssc.receiverStream(new CustomerReceiver("hadoop102", 9999))
//4.将每一行数据做切分,形成一个个单词
val wordStream = lineStream.flatMap(_.split("t"))
//5.将单词映射成元组(word,1)
val wordAndoneStream = wordStream.map((_, 1))
//6.将相同的单词次数做统计
val wordAndCountStream = wordAndOneStream.reduceByKey(_ + _)
//7.打印
wordAndCountStream.print()
//8.启动 SparkStreamingContext
ssc.start()
ssc.awaitTermination()
}
}
3、Kafka 数据源
ReceiverAPI:需要一个专门的 Executor 去接收数据,然后发送给其他的 Executor 做计算。存在的问题,接收数据的 Executor 和计算的 Executor 速度会有所不同,特别在接收数据的 Executor速度大于计算的 Executor 速度,会导致计算数据的节点内存溢出。早期版本中提供此方式,当前版本不适用DirectAPI:是由计算的 Executor 来主动消费 Kafka 的数据,速度由自身控制
需求:通过 SparkStreaming 从 Kafka 读取数据,并将读取过来的数据做简单计算,最终打印到控制台
导入依赖:
org.apache.spark spark-streaming-kafka-0-8_2.112.4.5
package com.atguigu.bigdata.spark.streaming
import java.util.Random
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.dstream.{InputDStream, ReceiverInputDStream}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.receiver.Receiver
import org.apache.spark.streaming.{Seconds, StreamingContext}
object SparkStreaming04_Kafka {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
val ssc = new StreamingContext(sparkConf, Seconds(3))
val kafkaPara: Map[String, Object] = Map[String, Object](
ConsumerConfig.BOOTSTRAP_SERVERS_ConFIG -> "linux1:9092,linux2:9092,linux3:9092",
ConsumerConfig.GROUP_ID_ConFIG -> "atguigu",
"key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
"value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
)
val kafkaDataDS: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
ssc,
LocationStrategies.PreferConsistent,
ConsumerStrategies.Subscribe[String, String](Set("atguiguNew"), kafkaPara)
)
kafkaDataDS.map(_.value()).print()
ssc.start()
ssc.awaitTermination()
}
}
四、DStream 转换
1、无状态转化 *** 作 1.1、TransformDStream 上的 *** 作与 RDD 的类似,分为 Transformations(转换)和 Output Operations(输出)两种,此外转换 *** 作中还有一些比较特殊的原语,如:updateStateByKey()、transform()以及
各种 Window 相关的原语
Transform 允许 DStream 上执行任意的 RDD-to-RDD 函数。即使这些函数并没有在 DStream的 API 中暴露出来,通过该函数可以方便的扩展 Spark API。该函数每一批次调度一次。其实也就是对 DStream 中的 RDD 应用转换
package com.atguigu.bigdata.spark.streaming
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.{Seconds, StreamingContext}
object SparkStreaming06_State_Transform {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
val ssc = new StreamingContext(sparkConf, Seconds(3))
val lines = ssc.socketTextStream("localhost", 9999)
// transform方法可以将底层RDD获取到后进行 *** 作
// 1. DStream功能不完善
// 2. 需要代码周期性的执行
// Code : Driver端
val newDS: DStream[String] = lines.transform(
rdd => {
// Code : Driver端,(周期性执行)
rdd.map(
str => {
// Code : Executor端
str
}
)
}
)
// Code : Driver端
val newDS1: DStream[String] = lines.map(
data => {
// Code : Executor端
data
}
)
ssc.start()
ssc.awaitTermination()
}
}
1.2、 join
两个流之间的 join 需要两个流的批次大小一致,这样才能做到同时触发计算。计算过程就是 对当前批次的两个流中各自的 RDD 进行
join,与两个 RDD 的 join 效果相同。
package com.atguigu.bigdata.spark.streaming
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.{Seconds, StreamingContext}
object SparkStreaming06_State_Join {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
val ssc = new StreamingContext(sparkConf, Seconds(5))
val data9999 = ssc.socketTextStream("localhost", 9999)
val data8888 = ssc.socketTextStream("localhost", 8888)
val map9999: DStream[(String, Int)] = data9999.map((_,9))
val map8888: DStream[(String, Int)] = data8888.map((_,8))
// 所谓的DStream的Join *** 作,其实就是两个RDD的join
val joinDS: DStream[(String, (Int, Int))] = map9999.join(map8888)
joinDS.print()
ssc.start()
ssc.awaitTermination()
}
}
2、有状态转化 *** 作
2.1、 UpdateStateByKey
package com.atguigu.bigdata.spark.streaming
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
object SparkStreaming05_State {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
val ssc = new StreamingContext(sparkConf, Seconds(3))
ssc.checkpoint("cp")
// 无状态数据 *** 作,只对当前的采集周期内的数据进行处理
// 在某些场合下,需要保留数据统计结果(状态),实现数据的汇总
// 使用有状态 *** 作时,需要设定检查点路径
val datas = ssc.socketTextStream("localhost", 9999)
val wordToOne = datas.map((_,1))
//val wordToCount = wordToOne.reduceByKey(_+_)
// updateStateByKey:根据key对数据的状态进行更新
// 传递的参数中含有两个值
// 第一个值表示相同的key的value数据
// 第二个值表示缓存区相同key的value数据
val state = wordToOne.updateStateByKey(
( seq:Seq[Int], buff:Option[Int] ) => {
val newCount = buff.getOrElse(0) + seq.sum
Option(newCount)
}
)
state.print()
ssc.start()
ssc.awaitTermination()
}
}
2.2、WindowOperations
Window Operations 可以设置窗口的大小和滑动窗口的间隔来动态的获取当前 Steaming 的允许 状态。所有基于窗口的 *** 作都需要两个参数,分别为窗口时长以及滑动步长。
package com.atguigu.bigdata.spark.streaming
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.{Seconds, StreamingContext}
object SparkStreaming06_State_Window {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
val ssc = new StreamingContext(sparkConf, Seconds(3))
val lines = ssc.socketTextStream("localhost", 9999)
val wordToOne = lines.map((_,1))
// 窗口的范围应该是采集周期的整数倍
// 窗口可以滑动的,但是默认情况下,一个采集周期进行滑动
// 这样的话,可能会出现重复数据的计算,为了避免这种情况,可以改变滑动的滑动(步长)
val windowDS: DStream[(String, Int)] = wordToOne.window(Seconds(6), Seconds(6))
val wordToCount = windowDS.reduceByKey(_+_)
wordToCount.print()
ssc.start()
ssc.awaitTermination()
}
}
package com.atguigu.bigdata.spark.streaming
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.{Seconds, StreamingContext}
object SparkStreaming06_State_Window1 {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
val ssc = new StreamingContext(sparkConf, Seconds(3))
ssc.checkpoint("cp")
val lines = ssc.socketTextStream("localhost", 9999)
val wordToOne = lines.map((_,1))
// reduceByKeyAndWindow : 当窗口范围比较大,但是滑动幅度比较小,那么可以采用增加数据和删除数据的方式
// 无需重复计算,提升性能。
val windowDS: DStream[(String, Int)] =
wordToOne.reduceByKeyAndWindow(
(x:Int, y:Int) => { x + y},
(x:Int, y:Int) => {x - y},
Seconds(9), Seconds(3))
windowDS.print()
ssc.start()
ssc.awaitTermination()
}
}
五、DStream 输出
➢ print():在运行流程序的驱动结点上打印 DStream 中每一批次数据的最开始 10 个元素。这
用于开发和调试。在 Python API 中,同样的 *** 作叫 print()。
➢ saveAsTextFiles(prefix, [suffix]):以 text 文件形式存储这个 DStream 的内容。每一批次的存
储文件名基于参数中的 prefix 和 suffix。”prefix-Time_IN_MS[.suffix]”。
➢ saveAsObjectFiles(prefix, [suffix]):以 Java 对象序列化的方式将 Stream 中的数据保存为
SequenceFiles . 每一批次的存储文件名基于参数中的为"prefix-TIME_IN_MS[.suffix]". Python
中目前不可用。
➢ saveAsHadoopFiles(prefix, [suffix]):将 Stream 中的数据保存为 Hadoop files. 每一批次的存
储文件名基于参数中的为"prefix-TIME_IN_MS[.suffix]"。Python API 中目前不可用。
➢ foreachRDD(func):这是最通用的输出 *** 作,即将函数 func 用于产生于 stream 的每一个
RDD。其中参数传入的函数 func 应该实现将每一个 RDD 中数据推送到外部系统,如将
RDD 存入文件或者通过网络将其写入数据库
注意:
- 连接不能写在 driver 层面(序列化)
- 如果写在 foreach 则每个 RDD 中的每一条数据都创建,得不偿失;
- 增加 foreachPartition,在分区创建(获取)
package com.atguigu.bigdata.spark.streaming
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.{Seconds, StreamingContext}
object SparkStreaming07_Output {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
val ssc = new StreamingContext(sparkConf, Seconds(3))
ssc.checkpoint("cp")
val lines = ssc.socketTextStream("localhost", 9999)
val wordToOne = lines.map((_,1))
val windowDS: DStream[(String, Int)] =
wordToOne.reduceByKeyAndWindow(
(x:Int, y:Int) => { x + y},
(x:Int, y:Int) => {x - y},
Seconds(9), Seconds(3))
// SparkStreaming如何没有输出 *** 作,那么会提示错误
//windowDS.print()
ssc.start()
ssc.awaitTermination()
}
}
package com.atguigu.bigdata.spark.streaming
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.{Seconds, StreamingContext}
object SparkStreaming07_Output1 {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
val ssc = new StreamingContext(sparkConf, Seconds(3))
ssc.checkpoint("cp")
val lines = ssc.socketTextStream("localhost", 9999)
val wordToOne = lines.map((_,1))
val windowDS: DStream[(String, Int)] =
wordToOne.reduceByKeyAndWindow(
(x:Int, y:Int) => { x + y},
(x:Int, y:Int) => {x - y},
Seconds(9), Seconds(3))
// foreachRDD不会出现时间戳
windowDS.foreachRDD(
rdd => {
}
)
ssc.start()
ssc.awaitTermination()
}
}
六、优雅关闭
流式任务需要 7*24 小时执行,但是有时涉及到升级代码需要主动停止程序,但是分
布式程序,没办法做到一个个进程去杀死,所有配置优雅的关闭就显得至关重要了。
使用外部文件系统来控制内部程序关闭
package com.atguigu.bigdata.spark.streaming
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.{Seconds, StreamingContext, StreamingContextState}
object SparkStreaming08_Close {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
val ssc = new StreamingContext(sparkConf, Seconds(3))
val lines = ssc.socketTextStream("localhost", 9999)
val wordToOne = lines.map((_,1))
wordToOne.print()
ssc.start()
// 如果想要关闭采集器,那么需要创建新的线程
// 而且需要在第三方程序中增加关闭状态
new Thread(
new Runnable {
override def run(): Unit = {
// 优雅地关闭
// 计算节点不在接收新的数据,而是将现有的数据处理完毕,然后关闭
// Mysql : Table(stopSpark) => Row => data
// Redis : Data(K-V)
// ZK : /stopSpark
// HDFS : /stopSpark
Thread.sleep(5000)
val state: StreamingContextState = ssc.getState()
if ( state == StreamingContextState.ACTIVE ) {
ssc.stop(true, true)
}
System.exit(0)
}
}
).start()
ssc.awaitTermination() // block 阻塞main线程
}
}
七、SparkStreaming 案例实 ***
package com.atguigu.bigdata.spark.streaming
import java.util.{Properties, Random}
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import scala.collection.mutable.ListBuffer
object SparkStreaming10_MockData {
def main(args: Array[String]): Unit = {
// 生成模拟数据
// 格式 :timestamp area city userid adid
// 含义: 时间戳 区域 城市 用户 广告
// Application => Kafka => SparkStreaming => Analysis
val prop = new Properties()
// 添加配置
prop.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "linux1:9092")
prop.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer")
prop.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer")
val producer = new KafkaProducer[String, String](prop)
while ( true ) {
mockdata().foreach(
data => {
// 向Kafka中生成数据
val record = new ProducerRecord[String, String]("atguiguNew", data)
producer.send(record)
println(data)
}
)
Thread.sleep(2000)
}
}
def mockdata() = {
val list = ListBuffer[String]()
val areaList = ListBuffer[String]("华北", "华东", "华南")
val cityList = ListBuffer[String]("北京", "上海", "深圳")
for ( i <- 1 to new Random().nextInt(50) ) {
val area = areaList(new Random().nextInt(3))
val city = cityList(new Random().nextInt(3))
var userid = new Random().nextInt(6) + 1
var adid = new Random().nextInt(6) + 1
list.append(s"${System.currentTimeMillis()} ${area} ${city} ${userid} ${adid}")
}
list
}
}
1、需求一:广告黑名单
package com.atguigu.bigdata.spark.streaming
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
object SparkStreaming11_Req1 {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
val ssc = new StreamingContext(sparkConf, Seconds(3))
val kafkaPara: Map[String, Object] = Map[String, Object](
ConsumerConfig.BOOTSTRAP_SERVERS_ConFIG -> "linux1:9092,linux2:9092,linux3:9092",
ConsumerConfig.GROUP_ID_ConFIG -> "atguigu",
"key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
"value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
)
val kafkaDataDS: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
ssc,
LocationStrategies.PreferConsistent,
ConsumerStrategies.Subscribe[String, String](Set("atguiguNew"), kafkaPara)
)
kafkaDataDS.map(_.value()).print()
ssc.start()
ssc.awaitTermination()
}
}
package com.atguigu.bigdata.spark.streaming
import java.sql.ResultSet
import java.text.SimpleDateFormat
import com.atguigu.bigdata.spark.util.JDBCUtil
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import scala.collection.mutable.ListBuffer
object SparkStreaming11_Req1_BlackList {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
val ssc = new StreamingContext(sparkConf, Seconds(3))
val kafkaPara: Map[String, Object] = Map[String, Object](
ConsumerConfig.BOOTSTRAP_SERVERS_ConFIG -> "linux1:9092,linux2:9092,linux3:9092",
ConsumerConfig.GROUP_ID_ConFIG -> "atguigu",
"key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
"value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
)
val kafkaDataDS: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
ssc,
LocationStrategies.PreferConsistent,
ConsumerStrategies.Subscribe[String, String](Set("atguiguNew"), kafkaPara)
)
val adClickData = kafkaDataDS.map(
kafkaData => {
val data = kafkaData.value()
val datas = data.split(" ")
AdClickData(datas(0),datas(1),datas(2),datas(3),datas(4))
}
)
val ds = adClickData.transform(
rdd => {
// TODO 通过JDBC周期性获取黑名单数据
val blackList = ListBuffer[String]()
val conn = JDBCUtil.getConnection
val pstat = conn.prepareStatement("select userid from black_list")
val rs: ResultSet = pstat.executeQuery()
while ( rs.next() ) {
blackList.append(rs.getString(1))
}
rs.close()
pstat.close()
conn.close()
// TODO 判断点击用户是否在黑名单中
val filterRDD = rdd.filter(
data => {
!blackList.contains(data.user)
}
)
// TODO 如果用户不在黑名单中,那么进行统计数量(每个采集周期)
filterRDD.map(
data => {
val sdf = new SimpleDateFormat("yyyy-MM-dd")
val day = sdf.format(new java.util.Date( data.ts.toLong ))
val user = data.user
val ad = data.ad
(( day, user, ad ), 1) // (word, count)
}
).reduceByKey(_+_)
}
)
ds.foreachRDD(
rdd => {
rdd.foreach{
case ( ( day, user, ad ), count ) => {
println(s"${day} ${user} ${ad} ${count}")
if ( count >= 30 ) {
// TODO 如果统计数量超过点击阈值(30),那么将用户拉入到黑名单
val conn = JDBCUtil.getConnection
val pstat = conn.prepareStatement(
"""
|insert into black_list (userid) values (?)
|on DUPLICATE KEY
|UPDATe userid = ?
""".stripMargin)
pstat.setString(1, user)
pstat.setString(2, user)
pstat.executeUpdate()
pstat.close()
conn.close()
} else {
// TODO 如果没有超过阈值,那么需要将当天的广告点击数量进行更新。
val conn = JDBCUtil.getConnection
val pstat = conn.prepareStatement(
"""
| select
| *
| from user_ad_count
| where dt = ? and userid = ? and adid = ?
""".stripMargin)
pstat.setString(1, day)
pstat.setString(2, user)
pstat.setString(3, ad)
val rs = pstat.executeQuery()
// 查询统计表数据
if ( rs.next() ) {
// 如果存在数据,那么更新
val pstat1 = conn.prepareStatement(
"""
| update user_ad_count
| set count = count + ?
| where dt = ? and userid = ? and adid = ?
""".stripMargin)
pstat1.setInt(1, count)
pstat1.setString(2, day)
pstat1.setString(3, user)
pstat1.setString(4, ad)
pstat1.executeUpdate()
pstat1.close()
// TODO 判断更新后的点击数据是否超过阈值,如果超过,那么将用户拉入到黑名单。
val pstat2 = conn.prepareStatement(
"""
|select
| *
|from user_ad_count
|where dt = ? and userid = ? and adid = ? and count >= 30
""".stripMargin)
pstat2.setString(1, day)
pstat2.setString(2, user)
pstat2.setString(3, ad)
val rs2 = pstat2.executeQuery()
if ( rs2.next() ) {
val pstat3 = conn.prepareStatement(
"""
|insert into black_list (userid) values (?)
|on DUPLICATE KEY
|UPDATe userid = ?
""".stripMargin)
pstat3.setString(1, user)
pstat3.setString(2, user)
pstat3.executeUpdate()
pstat3.close()
}
rs2.close()
pstat2.close()
} else {
// 如果不存在数据,那么新增
val pstat1 = conn.prepareStatement(
"""
| insert into user_ad_count ( dt, userid, adid, count ) values ( ?, ?, ?, ? )
""".stripMargin)
pstat1.setString(1, day)
pstat1.setString(2, user)
pstat1.setString(3, ad)
pstat1.setInt(4, count)
pstat1.executeUpdate()
pstat1.close()
}
rs.close()
pstat.close()
conn.close()
}
}
}
}
)
ssc.start()
ssc.awaitTermination()
}
// 广告点击数据
case class AdClickData( ts:String, area:String, city:String, user:String, ad:String )
}
package com.atguigu.bigdata.spark.streaming
import java.sql.ResultSet
import java.text.SimpleDateFormat
import com.atguigu.bigdata.spark.util.JDBCUtil
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import scala.collection.mutable.ListBuffer
object SparkStreaming11_Req1_BlackList1 {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
val ssc = new StreamingContext(sparkConf, Seconds(3))
val kafkaPara: Map[String, Object] = Map[String, Object](
ConsumerConfig.BOOTSTRAP_SERVERS_ConFIG -> "linux1:9092,linux2:9092,linux3:9092",
ConsumerConfig.GROUP_ID_ConFIG -> "atguigu",
"key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
"value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
)
val kafkaDataDS: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
ssc,
LocationStrategies.PreferConsistent,
ConsumerStrategies.Subscribe[String, String](Set("atguiguNew"), kafkaPara)
)
val adClickData = kafkaDataDS.map(
kafkaData => {
val data = kafkaData.value()
val datas = data.split(" ")
AdClickData(datas(0),datas(1),datas(2),datas(3),datas(4))
}
)
val ds = adClickData.transform(
rdd => {
// TODO 通过JDBC周期性获取黑名单数据
val blackList = ListBuffer[String]()
val conn = JDBCUtil.getConnection
val pstat = conn.prepareStatement("select userid from black_list")
val rs: ResultSet = pstat.executeQuery()
while ( rs.next() ) {
blackList.append(rs.getString(1))
}
rs.close()
pstat.close()
conn.close()
// TODO 判断点击用户是否在黑名单中
val filterRDD = rdd.filter(
data => {
!blackList.contains(data.user)
}
)
// TODO 如果用户不在黑名单中,那么进行统计数量(每个采集周期)
filterRDD.map(
data => {
val sdf = new SimpleDateFormat("yyyy-MM-dd")
val day = sdf.format(new java.util.Date( data.ts.toLong ))
val user = data.user
val ad = data.ad
(( day, user, ad ), 1) // (word, count)
}
).reduceByKey(_+_)
}
)
ds.foreachRDD(
rdd => {
// rdd. foreach方法会每一条数据创建连接
// foreach方法是RDD的算子,算子之外的代码是在Driver端执行,算子内的代码是在Executor端执行
// 这样就会涉及闭包 *** 作,Driver端的数据就需要传递到Executor端,需要将数据进行序列化
// 数据库的连接对象是不能序列化的。
// RDD提供了一个算子可以有效提升效率 : foreachPartition
// 可以一个分区创建一个连接对象,这样可以大幅度减少连接对象的数量,提升效率
rdd.foreachPartition(iter => {
val conn = JDBCUtil.getConnection
iter.foreach{
case ( ( day, user, ad ), count ) => {
}
}
conn.close()
}
)
rdd.foreach{
case ( ( day, user, ad ), count ) => {
println(s"${day} ${user} ${ad} ${count}")
if ( count >= 30 ) {
// TODO 如果统计数量超过点击阈值(30),那么将用户拉入到黑名单
val conn = JDBCUtil.getConnection
val sql = """
|insert into black_list (userid) values (?)
|on DUPLICATE KEY
|UPDATe userid = ?
""".stripMargin
JDBCUtil.executeUpdate(conn, sql, Array( user, user ))
conn.close()
} else {
// TODO 如果没有超过阈值,那么需要将当天的广告点击数量进行更新。
val conn = JDBCUtil.getConnection
val sql = """
| select
| *
| from user_ad_count
| where dt = ? and userid = ? and adid = ?
""".stripMargin
val flg = JDBCUtil.isExist(conn, sql, Array( day, user, ad ))
// 查询统计表数据
if ( flg ) {
// 如果存在数据,那么更新
val sql1 = """
| update user_ad_count
| set count = count + ?
| where dt = ? and userid = ? and adid = ?
""".stripMargin
JDBCUtil.executeUpdate(conn, sql1, Array(count, day, user, ad))
// TODO 判断更新后的点击数据是否超过阈值,如果超过,那么将用户拉入到黑名单。
val sql2 = """
|select
| *
|from user_ad_count
|where dt = ? and userid = ? and adid = ? and count >= 30
""".stripMargin
val flg1 = JDBCUtil.isExist(conn, sql2, Array( day, user, ad ))
if ( flg1 ) {
val sql3 = """
|insert into black_list (userid) values (?)
|on DUPLICATE KEY
|UPDATE userid = ?
""".stripMargin
JDBCUtil.executeUpdate(conn, sql3, Array( user, user ))
}
} else {
val sql4 = """
| insert into user_ad_count ( dt, userid, adid, count ) values ( ?, ?, ?, ? )
""".stripMargin
JDBCUtil.executeUpdate(conn, sql4, Array( day, user, ad, count ))
}
conn.close()
}
}
}
}
)
ssc.start()
ssc.awaitTermination()
}
// 广告点击数据
case class AdClickData( ts:String, area:String, city:String, user:String, ad:String )
}
2、需求二:广告点击量实时统计
package com.atguigu.bigdata.spark.streaming
import java.text.SimpleDateFormat
import com.atguigu.bigdata.spark.streaming.SparkStreaming11_Req1_BlackList.AdClickData
import com.atguigu.bigdata.spark.util.JDBCUtil
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
object SparkStreaming12_Req2 {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
val ssc = new StreamingContext(sparkConf, Seconds(3))
val kafkaPara: Map[String, Object] = Map[String, Object](
ConsumerConfig.BOOTSTRAP_SERVERS_ConFIG -> "linux1:9092,linux2:9092,linux3:9092",
ConsumerConfig.GROUP_ID_ConFIG -> "atguigu",
"key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
"value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
)
val kafkaDataDS: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
ssc,
LocationStrategies.PreferConsistent,
ConsumerStrategies.Subscribe[String, String](Set("atguiguNew"), kafkaPara)
)
val adClickData = kafkaDataDS.map(
kafkaData => {
val data = kafkaData.value()
val datas = data.split(" ")
AdClickData(datas(0),datas(1),datas(2),datas(3),datas(4))
}
)
val reduceDS = adClickData.map(
data => {
val sdf = new SimpleDateFormat("yyyy-MM-dd")
val day = sdf.format(new java.util.Date( data.ts.toLong ))
val area = data.area
val city = data.city
val ad = data.ad
( ( day, area, city, ad ), 1 )
}
).reduceByKey(_+_)
reduceDS.foreachRDD(
rdd => {
rdd.foreachPartition(
iter => {
val conn = JDBCUtil.getConnection
val pstat = conn.prepareStatement(
"""
| insert into area_city_ad_count ( dt, area, city, adid, count )
| values ( ?, ?, ?, ?, ? )
| on DUPLICATE KEY
| UPDATE count = count + ?
""".stripMargin)
iter.foreach{
case ( ( day, area, city, ad ), sum ) => {
pstat.setString(1,day )
pstat.setString(2,area )
pstat.setString(3, city)
pstat.setString(4, ad)
pstat.setInt(5, sum)
pstat.setInt(6,sum )
pstat.executeUpdate()
}
}
pstat.close()
conn.close()
}
)
}
)
ssc.start()
ssc.awaitTermination()
}
// 广告点击数据
case class AdClickData( ts:String, area:String, city:String, user:String, ad:String )
}
3、需求三:最近一小时广告点击量
package com.atguigu.bigdata.spark.streaming
import java.text.SimpleDateFormat
import com.atguigu.bigdata.spark.util.JDBCUtil
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
object SparkStreaming13_Req3 {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
val ssc = new StreamingContext(sparkConf, Seconds(5))
val kafkaPara: Map[String, Object] = Map[String, Object](
ConsumerConfig.BOOTSTRAP_SERVERS_ConFIG -> "linux1:9092,linux2:9092,linux3:9092",
ConsumerConfig.GROUP_ID_ConFIG -> "atguigu",
"key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
"value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
)
val kafkaDataDS: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
ssc,
LocationStrategies.PreferConsistent,
ConsumerStrategies.Subscribe[String, String](Set("atguiguNew"), kafkaPara)
)
val adClickData = kafkaDataDS.map(
kafkaData => {
val data = kafkaData.value()
val datas = data.split(" ")
AdClickData(datas(0),datas(1),datas(2),datas(3),datas(4))
}
)
// 最近一分钟,每10秒计算一次
// 12:01 => 12:00
// 12:11 => 12:10
// 12:19 => 12:10
// 12:25 => 12:20
// 12:59 => 12:50
// 55 => 50, 49 => 40, 32 => 30
// 55 / 10 * 10 => 50
// 49 / 10 * 10 => 40
// 32 / 10 * 10 => 30
// 这里涉及窗口的计算
val reduceDS = adClickData.map(
data => {
val ts = data.ts.toLong
val newTS = ts / 10000 * 10000
( newTS, 1 )
}
).reduceByKeyAndWindow((x:Int,y:Int)=>{x+y}, Seconds(60), Seconds(10))
reduceDS.print()
ssc.start()
ssc.awaitTermination()
}
// 广告点击数据
case class AdClickData( ts:String, area:String, city:String, user:String, ad:String )
}
package com.atguigu.bigdata.spark.streaming
import java.io.{File, FileWriter, PrintWriter}
import java.text.SimpleDateFormat
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import scala.collection.mutable.ListBuffer
object SparkStreaming13_Req31 {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
val ssc = new StreamingContext(sparkConf, Seconds(5))
val kafkaPara: Map[String, Object] = Map[String, Object](
ConsumerConfig.BOOTSTRAP_SERVERS_ConFIG -> "linux1:9092,linux2:9092,linux3:9092",
ConsumerConfig.GROUP_ID_ConFIG -> "atguigu",
"key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
"value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
)
val kafkaDataDS: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
ssc,
LocationStrategies.PreferConsistent,
ConsumerStrategies.Subscribe[String, String](Set("atguiguNew"), kafkaPara)
)
val adClickData = kafkaDataDS.map(
kafkaData => {
val data = kafkaData.value()
val datas = data.split(" ")
AdClickData(datas(0),datas(1),datas(2),datas(3),datas(4))
}
)
// 最近一分钟,每10秒计算一次
// 12:01 => 12:00
// 12:11 => 12:10
// 12:19 => 12:10
// 12:25 => 12:20
// 12:59 => 12:50
// 55 => 50, 49 => 40, 32 => 30
// 55 / 10 * 10 => 50
// 49 / 10 * 10 => 40
// 32 / 10 * 10 => 30
// 这里涉及窗口的计算
val reduceDS = adClickData.map(
data => {
val ts = data.ts.toLong
val newTS = ts / 10000 * 10000
( newTS, 1 )
}
).reduceByKeyAndWindow((x:Int,y:Int)=>{x+y}, Seconds(60), Seconds(10))
//reduceDS.print()
reduceDS.foreachRDD(
rdd => {
val list = ListBuffer[String]()
val datas: Array[(Long, Int)] = rdd.sortByKey(true).collect()
datas.foreach{
case ( time, cnt ) => {
val timeString = new SimpleDateFormat("mm:ss").format(new java.util.Date(time.toLong))
list.append(s"""{"xtime":"${timeString}", "yval":"${cnt}"}""")
}
}
// 输出文件
val out = new PrintWriter(new FileWriter(new File("D:\mineworkspace\idea\classes\atguigu-classes\datas\adclick\adclick.json")))
out.println("["+list.mkString(",")+"]")
out.flush()
out.close()
}
)
ssc.start()
ssc.awaitTermination()
}
// 广告点击数据
case class AdClickData( ts:String, area:String, city:String, user:String, ad:String )
}
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)