
数据源是尚硅谷的课件, 需要的话可以私信我
核心代码
import org.apache.flink.api.common.serialization.SimpleStringSchema
import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.functions.KeyedProcessFunction
import org.apache.flink.streaming.api.functions.sink.{RichSinkFunction, SinkFunction}
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.scala.function.ProcessWindowFunction
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.streaming.api.windowing.windows.TimeWindow
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer
import org.apache.flink.util.Collector
import java.sql.{Connection, DriverManager, PreparedStatement, Timestamp}
import java.text.SimpleDateFormat
import java.util.Properties
// 每条数据
// 输入样例类
case class UVItem(url: String, ip:String, timestamp: Long)
// 基于WindowEnd分组的样例类
case class UVWindowEnd(url: String, WindowEnd: Long, Count: Long)
// 目标 每五分钟统计这个1小时的每个页面的UV值
object UniqueVisitor {
def main(args: Array[String]): Unit = {
// 创建环境
val env = StreamExecutionEnvironment.getExecutionEnvironment
// 设置时间特性为事件时间
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
// kafka消费数据
// 读取resource的数据文件
val inputStream = env.readTextFile(getClass.getResource("/apache.log").getPath)
// 将每行数据用空格切割后 封装成样例类 数据乱序 并指定时间戳 设置Watermark为 30秒
val dataStream = inputStream
.map(data=>{
val arr = data.split(" ")
val timestamp = new SimpleDateFormat("dd/MM/yyyy:HH:mm:ss").parse(arr(3)).getTime
// (url: String, ip:String, timestamp: Long)
UVItem(arr(6), arr(0), timestamp)
}).assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[UVItem](Time.seconds(30)) {
override def extractTimestamp(t: UVItem): Long = t.timestamp
})
dataStream
.keyBy(_.url) // url作为key进行分组
.timeWindow(Time.hours(1), Time.minutes(5)) // 开滚动窗口 长度1小时 步长5分钟
.process(new CountUVProcess()) // 自定义类继承ProcessWindowFunction 对每个url进行统计 (url: String, WindowEnd: Long, Count: Long)
.keyBy(_.WindowEnd) // 窗口结束时间作为key进行分组
.process(new windowEndProcess()) // 对每个窗口的数据包装成要存到MySQL的元组 (Long, String, Long)(窗口结束时间, ip, 访问次数)
.addSink(new JDBCSink()) // 往MySQL插入数据
env.execute()
}
}
// 自定义RichSinkFunction往MySQL插入数据
class JDBCSink extends RichSinkFunction[(Long, String, Long)]{
// 定义连接和预处理器
var conn:Connection = _
var insertStatement: PreparedStatement = _
// 在open函数初始化连接和预编译器
override def open(parameters: Configuration): Unit = {
conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/pv_uv", "root", "123456")
insertStatement = conn.prepareStatement("insert into unique_visitor value(?, ? ,?)")
}
// 在close函数关闭连接和预编译器
override def close(): Unit = {
conn.close()
insertStatement.close()
}
// 在invoke函数指定预处理器的数据和执行插入语句
override def invoke(value: (Long, String, Long), context: SinkFunction.Context[_]): Unit = {
// 指定预编译器的数据
insertStatement.setTimestamp(1, new Timestamp(value._1))
insertStatement.setString(2, value._2)
insertStatement.setInt(3, value._3.toInt)
// 执行预编译器
insertStatement.execute()
}
}
// 基于WindowEnd分组后 在该Process中返回要插入数据库的元祖Tuple
class windowEndProcess() extends KeyedProcessFunction[Long, UVWindowEnd, (Long, String, Long)]{
override def processElement(i: UVWindowEnd, context: KeyedProcessFunction[Long, UVWindowEnd, (Long, String, Long)]#Context, collector: Collector[(Long, String, Long)]): Unit = {
// 返回(窗口结束时间, 页面路径, 访问次数)
collector.collect((i.WindowEnd, i.url, i.Count))
}
}
// 基于url分组并开窗后 在该Process中统计UV值
class CountUVProcess() extends ProcessWindowFunction[UVItem, UVWindowEnd, String, TimeWindow]{
override def process(key: String, context: Context, elements: Iterable[UVItem], out: Collector[UVWindowEnd]): Unit = {
// 用Set集合可以去重的特性 一个ip计为一次访问
var userIpSet = Set[String]()
for(item <- elements){
userIpSet += item.ip
}
// 返回(访问的url, 窗口结束时间, 访问次数)
out.collect(UVWindowEnd(key, context.window.getEnd, userIpSet.size))
}
}
MySQL创建表
插入数据后
依赖
org.apache.flink flink-connector-kafka_2.121.10.1 org.apache.flink flink-scala_2.111.10.2 org.apache.flink flink-streaming-scala_2.111.10.2 org.apache.flink flink-connector-kafka-0.11_2.111.10.2 org.apache.bahir flink-connector-redis_2.111.0 mysql mysql-connector-java8.0.25 org.apache.flink flink-statebackend-rocksdb_2.121.10.1 org.apache.flink flink-table-planner_2.111.10.1 org.apache.flink flink-table-planner-blink_2.111.10.1 org.apache.flink flink-table-api-scala-bridge_2.111.10.1 org.apache.flink flink-csv1.10.1 net.alchim31.maven scala-maven-plugin3.4.6 compile org.apache.maven.plugins maven-assembly-plugin3.0.0 jar-with-dependencies make-assembly package single
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)