
classification_report的格式
引用:sklearn.metrics.classification_report模块使用与指标分析(生成混淆矩阵评价分类指标)
在使用autoclassfication后获取其中的precision recall f1-score 值
def auto_sklearn_classification(X_train, X_test, y_train, y_test):
cls = autosklearn.classification.AutoSklearnClassifier(time_left_for_this_task=300, per_run_time_limit=90, ml_memory_limit=10000)
cls.fit(X_train, y_train)
predictions = cls.predict(X_test)
report = []
report_str = classification_report(y_test, predictions)
for row in report_str.split("n"):
parsed_row = [x for x in row.split(" ") if len(x) > 0]
if len(parsed_row) > 0:
report.append(parsed_row)
# save accuracy, precision, recall, F1-Score to dictionary
accuracy = accuracy_score(predictions,y_test)
precision = float(report[-1][1])#最后一行第二列的值
recall = float(report[-1][2])
f1_score = float(report[-1][3])
return accuracy, precision, recall, f1_score
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)