![[置顶] 2013腾讯编程马拉松初赛第3场(3月23)(HDU 4515 HDU4516 HDU4517 HDU4517 HDU4519),第1张 [置顶] 2013腾讯编程马拉松初赛第3场(3月23)(HDU 4515 HDU4516 HDU4517 HDU4517 HDU4519),第1张](/aiimages/%5B%E7%BD%AE%E9%A1%B6%5D+2013%E8%85%BE%E8%AE%AF%E7%BC%96%E7%A8%8B%E9%A9%AC%E6%8B%89%E6%9D%BE%E5%88%9D%E8%B5%9B%E7%AC%AC3%E5%9C%BA%EF%BC%883%E6%9C%8823%EF%BC%89%EF%BC%88HDU+4515+HDU4516+HDU4517+HDU4517+HDU4519%EF%BC%89.png)
链接 :http://acm.hdu.edu.cn/showproblem.php?pid=4515
题解:由于水题,直接贴roro大牛的代码
#include <stdio.h>
int day[2][13] = {0,31,28,31,30,31,30,31,31,30,31,30,31,0,31,29,31,30,31,30,31,31,30,31,30,31};
int judge(int y)
{
if (y%4 == 0 && y % 100 != 0 || y % 400 == 0)
return 1;
else
return 0;
}
int main()
{
int t, n;
scanf("%d",&t);
while (t--)
{
int sy = 2013, sm = 3, sd = 24;
scanf("%d",&n);
sd += n;
while (1)
{
int y = judge(sy);
if(sd > day[y][sm])
{
sd -= day[y][sm];
sm += 1;
if(sm > 12)
{
sm = 1;
sy += 1;
}
}
else
break;
}
printf("%4d/%02d/%02d ",sy,sm,sd);
sy = 2013, sm = 3, sd = 24;
sd -= n;
while (1)
{
if(sd < 1)
{
sm -= 1;
if(sm < 1)
{
sm = 12;
sy -= 1;
}
int y = judge(sy);
sd += day[y][sm];
}
else
break;
}
printf("%4d/%02d/%02d\n",sy,sm,sd);
}
}
第二题:威威猫系列故事——因式分解
链接:http://acm.hdu.edu.cn/showproblem.php?pid=4516
题解:(转自大牛http://www.cnblogs.com/Lyush/archive/2013/03/24/2978239.html)
题意:给定一个多项式,对其进行因式分解。
解法:由于多项式每一项系数绝对值不超过1000,由于最后解的形式为(x-a)(x-b)(x-c)(x-d)(x-e)其中a*b*c*d*e一定是最后的常数项系数,因此a, b, c, d, e的取值范围都在[-1000, 1000]内,因此枚举所有的根,剩下的就是重根的时候该怎么办?一个解决办法就是对原多项式进行求导,如果一个根t是f(x)的K重根的话,那么t一定是f(x)'的K-1重根。该题的字符串处理我没写好,后面调了很久。还有就是由于有5次方存在,因此代入时使用long long计算。
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cctype>
#include <vector>
using namespace std;
char str[500];
int seq[10];
long long _pow(int a, int b) {
long long ret = 1;
for (int i = 0; i < b; ++i) {
ret *= a;
}
return ret;
}
int jiechen[10] = {1, 1, 2, 6, 24, 120};
void qiudao(int *rec, int k) {
for (int i = k; i <= 5; ++i) {
rec[i-k] = jiechen[i] / jiechen[i-k] * seq[i];
}
}
bool judge(int rec[], int x) {
long long sum = 0;
for (int i = 0; i <= 5; ++i) {
sum += 1LL * rec[i] * _pow(x, i);
}
return sum == 0;
}
void gao(char ts[]) {
int len = strlen(ts);
int p = -1, a, b;
for (int i = 0; i < len; ++i) {
if (ts[i] == 'x') {
if (isdigit(ts[i-1])) {
ts[i] = '';
} else {
ts[i] = '1';
}
p = -2;
} else if (ts[i] == '^') {
ts[i] = '';
p = i+1;
}
}
a = atoi(ts);
if (!a && p != -1) a = 1;
if (p == -1) {
b = 0;
} else if (p == -2) {
b = 1;
}else {
b = atoi(ts+p);
}
seq[b] += a;
}
void solve() {
vector<int>v;
int cnt = 0;
memset(seq, 0, sizeof (seq));
char ts[50], *p;
p = strtok(str, "+");
while (p) {
strcpy(ts, p);
gao(ts);
p = strtok(NULL, "+");
}
for (int i = 5; i >= 0; --i) {
if (seq[i] != 0) {
cnt = i;
break;
}
}
for (int i = -1000; i <= 1000; ++i) {
for (int j = 0; j < cnt; ++j) {
int rec[10] = {0};
qiudao(rec, j);
if (judge(rec, i)) {
v.push_back(i);
} else {
break;
}
}
}
//x^4-x^2
//x^4-7x^3+18x^2-20x+8
//x^3-13x^2+55x-75
//x^2+5x^2-6x^2+x^2+2x-20x+30x-10x+8-7
//x^5-10x^4+39x^3-74x^2+68x-24
//以上都是能够分解的式子
if (v.size() != cnt || seq[cnt] != 1 || cnt == 0) {
printf("-1\n");
} else {
sort(v.begin(), v.end());
for (int i = v.size()-1; i >= 0; --i) {
if (v[i] < 0) {
printf("(x+%d)", -v[i]);
} else if (v[i] == 0) {
printf("x");
} else {
printf("(x-%d)", v[i]);
}
}
puts("");
}
}
int main() {
int T, ca = 0;
scanf("%d", &T);
while (T--) {
scanf("%s", str);
int len = strlen(str);
for (int i = 0; i < len; ++i) {
if (str[i] == '-') {
for (int j = len-1; j >= i; --j) {
str[j+1] = str[j];
}
str[i] = '+';
len += 1;
++i;
str[len] = '';
}
}
printf("Case #%d: ", ++ca);
solve();
}
return 0;
}
链接:http://acm.hdu.edu.cn/showproblem.php?pid=4518
题解:(转自网上大牛:http://blog.csdn.net/zhuhuangjian/article/details/8711287)
用p[i][j]存放0~i-1 * 0~j-1里的黑点数目。
然后对枚举,
if(p[i+x-1][j+y-1]+p[i-1][j-1]-p[i+x-1][j-1]-p[i-1][j+y-1]==x*y)
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)