《PyQt5快速开发与实战》epub下载在线阅读全文,求百度网盘云资源

《PyQt5快速开发与实战》epub下载在线阅读全文,求百度网盘云资源,第1张

PyQt5快速开发与实战电子书(1117)pdf免费下载

 c2e3

快速开发 通过所见即所得的在线设计和抽屉式配置页面跟随,快速开发实现易用性,大幅降低应用开发成本。

   

通用搜索引擎(Search Engine)工作原理

通用网络爬虫 从互联网中搜集网页,采集信息,这些网页信息用于为搜索引擎建立索引从而提供支持,它决定着整个引擎系统的内容是否丰富,信息是否即时,因此其性能的优劣直接影响着搜索引擎的效果。

第一步:抓取网页

搜索引擎网络爬虫的基本工作流程如下:

首先选取一部分的种子URL,将这些URL放入待抓取URL队列;

取出待抓取URL,解析DNS得到主机的IP,并将URL对应的网页下载下来,存储进已下载网页库中,并且将这些URL放进已抓取URL队列。

分析已抓取URL队列中的URL,分析其中的其他URL,并且将URL放入待抓取URL队列,从而进入下一个循环

搜索引擎如何获取一个新网站的URL:

1 新网站向搜索引擎主动提交网址:(如百度http://zhanzhangbaiducom/linksubmit/url)

2 在其他网站上设置新网站外链(尽可能处于搜索引擎爬虫爬取范围)

3 搜索引擎和DNS解析服务商(如DNSPod等)合作,新网站域名将被迅速抓取。

但是搜索引擎蜘蛛的爬行是被输入了一定的规则的,它需要遵从一些命令或文件的内容,如标注为nofollow的链接,或者是Robots协议。

Robots协议(也叫爬虫协议、机器人协议等),全称是“网络爬虫排除标准”(Robots Exclusion Protocol),网站通过Robots协议告诉搜索引擎哪些页面可以抓取,哪些页面不能抓取,例如:

淘宝网:https://wwwtaobaocom/robotstxt

腾讯网: http://wwwqqcom/robotstxt

第二步:数据存储

搜索引擎通过爬虫爬取到的网页,将数据存入原始页面数据库。其中的页面数据与用户浏览器得到的HTML是完全一样的。

搜索引擎蜘蛛在抓取页面时,也做一定的重复内容检测,一旦遇到访问权重很低的网站上有大量抄袭、采集或者复制的内容,很可能就不再爬行。

第三步:预处理

搜索引擎将爬虫抓取回来的页面,进行各种步骤的预处理。

提取文字

中文分词

消除噪音(比如版权声明文字、导航条、广告等……)

索引处理

链接关系计算

特殊文件处理

除了HTML文件外,搜索引擎通常还能抓取和索引以文字为基础的多种文件类型,如 PDF、Word、WPS、XLS、PPT、TXT 文件等。我们在搜索结果中也经常会看到这些文件类型。

但搜索引擎还不能处理、视频、Flash 这类非文字内容,也不能执行脚本和程序。

第四步:提供检索服务,网站排名

搜索引擎在对信息进行组织和处理后,为用户提供关键字检索服务,将用户检索相关的信息展示给用户。

同时会根据页面的PageRank值(链接的访问量排名)来进行网站排名,这样Rank值高的网站在搜索结果中会排名较前,当然也可以直接使用 Money 购买搜索引擎网站排名,简单粗暴。

但是,这些通用性搜索引擎也存在着一定的局限性:

通用搜索引擎所返回的结果都是网页,而大多情况下,网页里90%的内容对用户来说都是无用的。

不同领域、不同背景的用户往往具有不同的检索目的和需求,搜索引擎无法提供针对具体某个用户的搜索结果。

万维网数据形式的丰富和网络技术的不断发展,、数据库、音频、视频多媒体等不同数据大量出现,通用搜索引擎对这些文件无能为力,不能很好地发现和获取。

通用搜索引擎大多提供基于关键字的检索,难以支持根据语义信息提出的查询,无法准确理解用户的具体需求。

针对这些情况,聚焦爬虫技术得以广泛使用。

是的。 搜索引擎服务器会一刻不停的从互联网上抓取网页,存放到本地的机器上,然后建立索引,并且对外提供检索服务。典型的工作流程是

1。搜集

在这个流程中,用网络爬虫 或者叫spider的程序模块,不断地从web上寻找网页并且下载下来。最长用的方法是,把整个web网络看作是一个有向图,从种子URL集合开始,开始抓取并且存到本地,并且解析出网页内容中包含的url链接,然后把这些新的url加到url集合中。一般按照宽度优先的方式来查找。 这个过程不断重复直到URL集合中所有链接都已经采集过,或者是采集时间限制到了,或者是所有的不超过某一深度的连接都已经采集过了。这些下载下来的网页的标准html文本,以及采集url,采集时间等要素都要记录下来。

采集器还要注意对被采集网站的影响,避免采集造成攻击式的后果。

2。预处理

这个过程比较复杂

21 对html网页进行解析并且建立索引

html网页需要去掉html标签和一些垃圾连接,比如广告等。 对于网页的正文内容要建立索引。 索引是检索最重要的数据来源,对于检索速度和效果影响是根本性的。在索引中词和网页都用数字来标记。 常用的是倒排索引,格式如下 termid : docid1 docid2 docid3 其中termid也就是我们常说的词,(这个要通过对网页内容切词/分词之后得到),在索引中一般用词的编号来代替。docidx是所有包含该term的网页的编号。

22 计算每篇网页的重要程度。 一般各个网站的首页都比较重要,需要赋予较高的权重。常用的方法是利用网页之间的链接关系,类似学术研究上的相互引用关系,来计算每个网页的重要性,这就是page rank google就是靠它起家的

23 重复网页的消除 网络上的网页多是好几份的,大家你抄我的我抄你的,连个错别字都不会改的情况都存在 这些重复网页浪费了搜索引擎的代价,更重要的是影响检索的效果

3 检索服务

我们在检索端输入查询串之后,要经过分词处理然后利用的到词,得到termid,到前面21 生成的索引查找, 得到符合检索条件的网页的id 然后用网页的内容计算的权重和22 计算的page rank数值,以及其他的权重(比如 anchor text 等) 一起对每个网页给出一个最终权重 这些网页按照权重从大到小的排序之后输出 就是我们看到的检索结果了

当然这里谈到的只是一些最基本的实现方法 其实每个步骤都是非常复杂的一项工作,很多的技巧在里面,比如存储结构,比如一些自然语言处理技术,比如分类聚类等

上面的方法只能做一个demo系统,要真正的高性能的好的系统,还要其他更深的技术搜索引擎是个高门槛的东西

可以参考

The Anatomy of a Large-Scale Hypertextual Web Search Engine

是google的雏形的东西一些主要的技术都提到了在google上能找到这篇文章的pdf

希望对你有用

谢谢

本书从Python的安装开始,详细讲解了Python从简单程序延伸到Python网络爬虫的全过程。本书从实战出发,根据不同的需求选取不同的爬虫,有针对性地讲解了几种Python网络爬虫。本书共8章,涵盖的内容有Python语言的基本语法、Python常用IDE的使用、Python第三方模块的导入使用、Python爬虫常用模块、Scrapy爬虫、Beautiful

Soup爬虫、Mechanize模拟浏览器和Selenium模拟浏览器。本书所有源代码已上传网盘供读者下载。本书内容丰富,实例典型,实用性强。适合Python网络爬虫初学者、数据分析与挖掘技术初学者,以及高校及培训学校相关专业的师生阅读。

有一半是讲解python基础的,与爬虫无关。后面把流行的包或框架都讲到了,对初学者还是很不错的本书。

就像只要会JavaScript就可以写出完整的Web应用,只要会Python,就可以实现一个完整的大数据处理平台。

云基础设施

这年头,不支持云平台,不支持海量数据,不支持动态伸缩,根本不敢说自己是做大数据的,顶多也就敢跟人说是做商业智能(BI)。

云平台分为私有云和公有云。私有云平台如日中天的 OpenStack

,就是Python写的。曾经的追赶者CloudStack,在刚推出时大肆强调自己是Java写的,比Python有优势。结果,搬石砸脚,2015年

初,CloudStack的发起人Citrix宣布加入OpenStack基金会,CloudStack眼看着就要寿终正寝。

如果嫌麻烦不想自己搭建私有云,用公有云,不论是AWS,GCE,Azure,还是阿里云,青云,在都提供了Python SDK,其中GCE只提供Python和JavaScript的SDK,而青云只提供Python SDK。可见各家云平台对Python的重视。

提到基础设施搭建,不得不提Hadoop,在今天,Hadoop因为其MapReduce数据处理速度不够快,已经不再作为大数据处理的首选,但

是HDFS和Yarn——Hadoop的两个组件——倒是越来越受欢迎。Hadoop的开发语言是Java,没有官方提供Python支持,不过有很多第

三方库封装了Hadoop的API接口(pydoop,hadoopy等等)。

Hadoop MapReduce的替代者,是号称快上100倍的 Spark ,其开发语言是Scala,但是提供了Scala,Java,Python的开发接口,想要讨好那么多用Python开发的数据科学家,不支持Python,真是说不过去。HDFS的替代品,比如GlusterFS, Ceph 等,都是直接提供Python支持。Yarn的替代者, Mesos 是C++实现,除C++外,提供了Java和Python的支持包。

DevOps

DevOps有个中文名字,叫做 开发自运维 。互联网时代,只有能够快速试验新想法,并在第一时间,安全、可靠的交付业务价值,才能保持竞争力。DevOps推崇的自动化构建/测试/部署,以及系统度量等技术实践,是互联网时代必不可少的。

自动化构建是因应用而易的,如果是Python应用,因为有setuptools, pip, virtualenv, tox,

flake8等工具的存在,自动化构建非常简单。而且,因为几乎所有Linux系统都内置Python解释器,所以用Python做自动化,不需要系统预

安装什么软件。

自动化测试方面,基于Python的 Robot Framework 企业级应用最喜欢的自动化测试框架,而且和语言无关。Cucumber也有很多支持者,Python对应的Lettuce可以做到完全一样的事情。 Locust 在自动化性能测试方面也开始受到越来越多的关注。

自动化配置管理工具,老牌的如Chef和Puppet,是Ruby开发,目前仍保持着强劲的势头。不过,新生代 Ansible 和 SaltStack ——均为Python开发——因为较前两者设计更为轻量化,受到越来越多开发这的欢迎,已经开始给前辈们制造了不少的压力。

在系统监控与度量方面,传统的Nagios逐渐没落,新贵如 Sensu 大受好评,云服务形式的New Relic已经成为创业公司的标配,这些都不是直接通过Python实现的,不过Python要接入这些工具,并不困难。

除了上述这些工具,基于Python,提供完整DevOps功能的PaaS平台,如 Cloudify 和 Deis ,虽未成气候,但已经得到大量关注。

网络爬虫

大数据的数据从哪里来?除了部分企业有能力自己产生大量的数据,大部分时候,是需要靠爬虫来抓取互联网数据来做分析。

网络爬虫是Python的传统强势领域,最流行的爬虫框架Scrapy,HTTP工具包urlib2,HTML解析工具beautifulsoup,XML解析器lxml,等等,都是能够独当一面的类库。

不过,网络爬虫并不仅仅是打开网页,解析HTML这么简单。高效的爬虫要能够支持大量灵活的并发 *** 作,常常要能够同时几千甚至上万个网页同时抓取,传统的

线程池方式资源浪费比较大,线程数上千之后系统资源基本上就全浪费在线程调度上了。Python由于能够很好的支持协程( Coroutine ) *** 作,基于此发展起来很多并发库,如Gevent,Eventlet,还有Celery之类的分布式任务框架。被认为是比AMQP更高效的ZeroMQ也是最早就提供了Python版本。有了对高并发的支持,网络爬虫才真正可以达到大数据规模。

抓取下来的数据,需要做分词处理,Python在这方面也不逊色,著名的自然语言处理程序包NLTK,还有专门做中文分词的Jieba,都是做分词的利器。

数据处理

万事俱备,只欠东风。这东风,就是数据处理算法。从统计理论,到数据挖掘,机器学习,再到最近几年提出来的深度学习理论,数据科学正处于百花齐放的时代。数据科学家们都用什么编程?

如果是在理论研究领域,R语言也许是最受数据科学家欢迎的,但是R语言的问题也很明显,因为是统计学家们创建了R语言,所以其语法略显怪异。而且

R语言要想实现大规模分布式系统,还需要很长一段时间的工程之路要走。所以很多公司使用R语言做原型试验,算法确定之后,再翻译成工程语言。

Python也是数据科学家最喜欢的语言之一。和R语言不同,Python本身就是一门工程性语言,数据科学家用Python实现的算法,可以直

接用在产品中,这对于大数据初创公司节省成本是非常有帮助的。正式因为数据科学家对Python和R的热爱,Spark为了讨好数据科学家,对这两种语言

提供了非常好的支持。

Python的数据处理相关类库非常多。高性能的科学计算类库NumPy和SciPy,给其他高级算法打了非常好的基础,matploglib让

Python画图变得像Matlab一样简单。Scikit-learn和Milk实现了很多机器学习算法,基于这两个库实现的 Pylearn2 ,是深度学习领域的重要成员。 Theano 利用GPU加速,实现了高性能数学符号计算和多维矩阵计算。当然,还有 Pandas ,一个在工程领域已经广泛使用的大数据处理类库,其DataFrame的设计借鉴自R语言,后来又启发了Spark项目实现了类似机制。

对了,还有 iPython ,这个工具如此有用,以至于我差点把他当成标准库而忘了介绍。iPython是一个交互式Python运行环境,能够实时看到每一段Python代码的结果。默认情况下,iPython运行在命令行,可以执行 ipython notebook 在网页中运行。用matplotlib绘制的图可以直接嵌入式的显示在iPython Notebook中。

iPython Notebook的笔记本文件可以共享给其他人,这样其他人就可以在自己的环境中重现你的工作成果;如果对方没有运行环境,还可以直接转换成HTML或者PDF。

为什么是Python

正是因为应用开发工程师、运维工程师、数据科学家都喜欢Python,才使得Python成为大数据系统的全栈式开发语言。

对于开发工程师而言,Python的优雅和简洁无疑是最大的吸引力,在Python交互式环境中,执行 import this

,读一读Python之禅,你就明白Python为什么如此吸引人。Python社区一直非常有活力,和NodeJS社区软件包爆炸式增长不

同,Python的软件包增长速度一直比较稳定,同时软件包的质量也相对较高。有很多人诟病Python对于空格的要求过于苛刻,但正是因为这个要求,才

使得Python在做大型项目时比其他语言有优势。OpenStack项目总共超过200万行代码,证明了这一点。

对于运维工程师而言,Python的最大优势在于,几乎所有Linux发行版都内置了Python解释器。Shell虽然功能强大,但毕竟语法不够优雅,写比较复杂的任务会很痛苦。用Python替代Shell,做一些复杂的任务,对运维人员来说,是一次解放。

对于数据科学家而言,Python简单又不失强大。和C/C++相比,不用做很多的底层工作,可以快速进行模型验证;和Java相比,Python语法简

洁,表达能力强,同样的工作只需要1/3代码;和Matlab,Octave相比,Python的工程成熟度更高。不止一个编程大牛表达过,Python

是最适合作为大学计算机科学编程课程使用的语言——MIT的计算机入门课程就是使用的Python——因为Python能够让人学到编程最重要的东西——

如何解决问题。

  学术堂整理了一篇3000字的计算机论文范文,供大家参考:

  范文题目:关于新工程教育计算机专业离散数学实验教学研究

  摘要: 立足新工科对计算机类专业应用实践能力培养的要求,分析了目前离散数学教学存在的关键问题,指明了开展离散数学实验教学的必要性。在此基础上,介绍了实验教学内容的设计思路和设计原则,给出了相应的实验项目,并阐述了实验教学的实施过程和教学效果。

  关键词:新工科教育;离散数学;计算机专业;实验教学

  引言

  新工科教育是以新理念、新模式培养具有可持续竞争力的创新型卓越工程科技人才,既重视前沿知识和交叉知识体系的构建,又强调实践创新创业能力的培养。计算机类是新工科体系中的一个庞大专业类,按照新工科教育的要求,计算机类专业的学生应该有很好的逻辑推理能力和实践创新能力,具有较好的数学基础和数学知识的应用能力。作为计算机类专业的核心基础课,离散数学的教学目标在于培养学生逻辑思维、计算思维能力以及分析问题和解决问题的能力。但长期以来“定义-定理-证明”这种纯数学的教学模式,导致学生意识不到该课程的重要性,从而缺乏学习兴趣,严重影响学生实践能力的培养。因此,打破原有的教学模式,结合计算机学科的应用背景,通过开展实验教学来加深学生对于离散数学知识的深度理解是实现离散数学教学目标的重要手段。

  1.实验项目设计

  围绕巩固课堂教学知识,培养学生实践创新能力两个目标,遵循实用性和可行性原则,设计了基础性、应用性、研究性和创新性四个层次的实验项目。

  (1) 基础性实验

  针对离散数学的一些基本问题,如基本的定义、性质、计算方法等设计了7个基础性实验项目,如表1所示。这类实验要求学生利用所学基础知识,完成算法设计并编写程序。通过实验将抽象的离散数学知识与编程结合起来,能激发学生学习离散数学的积极性,提高教学效率,进而培养学生的编程实践能力。

  (2) 应用性实验

  应用性实验是围绕离散数学主要知识单元在计算机学科领域的应用来设计实验,如表2所示。设计这类实验时充分考虑了学生掌握知识的情况,按照相关知识点的应用方法给出了每个实验的步骤。学生甚至不需要完成全部实验步骤即可达到实验效果。例如,在“等价关系的应用”实验中,按照基于等价类测试用例的设计方法给出了实验步骤,对基础较差的学生只需做完第三步即可达到“巩固等价关系、等价类、划分等相关知识,了解等价关系在软件测试中的应用,培养数学知识的应用能力。”的实验目的。

  (3) 研究性实验研究性实验和应用性实验一样

  也是围绕离散数学主要知识单元在计算机科学领域中的应用来设计实验,不同之处在于,研究性实验的实验步骤中增加了一些需要学生进一步探讨的问题。这类实验项目一方面为了使学生进一步了解离散数学的重要性,另一方面为了加强学生的创新意识与创新思维,提高计算机专业学生的数学素质和能力。表 3 给出了研究性试验项目。

  (4) 创新性实验

  在实际教学中还设计了多个难度较高的创新性实验题目,例如,基于prolog语言的简单动物识别

  系统、基于最短路径的公交线路查询系统、简单文本信息检索系统的实现等,完成该类实验需要花费较长的时间,用到更多的知识。通过这些实验不仅有利于培养学生分析问题、解决问题的能力和创新设计能力,也有利于培养学生独立思考、敢于创新的能力。

  3.实验教学模式的构建

  通过实验教学环节无疑可以激发学生对课程的兴趣,提高课程教学效率,培养学生的实践创新能力。但是,近年来,为了突出应用性人才培养,很多地方本科院校对离散数学等基础理论课的课时进行了压缩,加之地方本科院校学生基础较差,使得离散数学课时严重不足,不可能留出足够的实验教学时间。针对这种情况,采用多维度、多层次的教学模式进行离散数学实验教学。

  (1) 将实验项目引入课堂教学

  在离散数学的教学过程中,将能反映在计算机科学领域典型应用的实验项目引入到课堂教学中,引导学生应用所学知识分析问题、解决问题。例如在讲授主析取范式时,引入加法器、表决器的设计,并用multisim进行仿真演示,让学生理解数理逻辑在计算机硬件设计中的作用。又如讲谓词逻辑推理时,引入前一届学生用Prolog完成的“小型动物识别系统”作为演示实验。这些应用实例能够让学生体会数理逻辑在计算机科学领域的应用价值,不仅激发学生的学习兴趣,提高课堂教学效率,也锻炼了学生的逻辑思维,培养了学生的系统设计能力。

  (2) 改变课后作业形式,在课后作业中增加上机实验题目

  由于课时有限,将实验内容以课后作业的形式布置下去,让学生在课余时间完成实验任务。例如讲完数理逻辑内容后,布置作业: 编写 C语言程序,实现如下功能: 给定两个命题变元 P、Q,给它们赋予一定的真值,并计算P、P∧Q、P∨Q的真值。通过完成,使学生掌握命题联结词的定义和真值的确定方法,了解逻辑运算在计算机中的实现方法。又如,把“偏序关系的应用”实验作为“二元关系”这一章的课后作业,给定某专业开设的课程以及课程之间的先后关系,要求学生画出课程关系的哈斯图,安排该专业课程开设顺序,并编写程序实现拓扑排序算法。通过该实验学生不仅巩固了偏序关系、哈斯图等知识,而且了解到偏序关系在计算机程序设计算法中的应用和实现方法。

  (3) 布置阅读材料

  在教学中,通常选取典型应用和相关的背景知识作为课前或课后阅读材料,通过课堂提问抽查学生的阅读情况。这样,不仅使学生预习或复习了课程内容,同时也使他们对相关知识点在计算机学科领域的应用有了一定的了解。例如,在讲解等价关系后,将“基于等价类的软件测试用例设计方法”作为课后阅读材料; 在讲解图的基本概念之前,将“图在网络爬虫技术中的应用”作为课前阅读材料; 货郎担问题和中国邮路问题作为特殊图的课后阅读材料。通过这些阅读材料极大地调动学生学习的积极性,取得了非常好的教学效果。

  (4) 设置开放性实验项目

  在离散数学教学中,通常选择一两个创新性实验项目作为课外开放性实验,供学有余力的学生学习并完成,图1给出了学生完成的“基于最短路径公交查询系统”界面图。同时,又将学生完成的实验系统用于日后的课堂教学演示,取得了比较好的反响。

  (5) 利用网络教学平台

  为了拓展学生学习的空间和时间,建立了离散数学学习网站,学习网站主要包括资源下载、在线视频、在线测试、知识拓展和站内论坛五个部分模块,其中知识拓展模块包含背景知识、应用案例和实验教学三部分内容。通过学习网站,学生不仅可以了解离散数学各知识点的典型应用,还可以根据自己的兴趣选择并完成一些实验项目。在教学实践中,规定学生至少完成1-2个应用性实验项目并纳入期中或平时考试成绩中,从而激发学生的学习兴趣。

  4.结束语

  针对新工科教育对计算机类专业实践创新能力的要求,在离散数学教学实践中进行了多方位、多层次的实验教学,使学生了解到离散数学的重要

  性,激发了学生的学习兴趣,提高了学生程序设计能力和创新能力,取得了较好的教学效果。教学团队将进一步挖掘离散数学的相关知识点在计算机学科领域的应用,完善离散数学实验教学体系,使学生实践能力和创新思维得以协同培养,适应未来工程需要。

  参考文献:

  [1]徐晓飞,丁效华.面向可持续竞争力的新工科人才培养模式改革探索[J].中国大学教学,2017(6).

  [2]钟登华.新工科建设的内涵与行动[J].高等工程教育研究,2017(3).

  [3]蒋宗礼.新工科建设背景下的计算机类专业改革养[J].中国大学教学,2018( 11) .

  [4]The Joint IEEE Computer Society/ACM Task Force onComputing Curricula Computing Curricula 2001 ComputerScience[DB / OL]. http:/ / WWW. acm. org / education /curric_vols / cc2001. pdf,2001.

  [5]ACM/IEEE - CS Joint Task Force on Computing Curricula.2013. Computer Science Curricula 2013[DB / OL]. ACMPress and IEEE Computer Society Press. DOI: http: / / dx.doi. org /10. 1145 /2534860.

  [6]中国计算机科学与技术学科教程2002研究组.中国计算机科学与技术学科教程2002[M].北京: 清华大学出版社,2002.

  [7]张剑妹,李艳玲,吴海霞.结合计算机应用的离散数学教学研究[J].数学学习与研究,2014(1) .

  [8]莫愿斌.凸显计算机专业特色的离散数学教学研究与实践[J].计算机教育,2010(14)

欢迎分享,转载请注明来源:内存溢出

原文地址:https://54852.com/zaji/13493505.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2025-09-01
下一篇2025-09-01

发表评论

登录后才能评论

评论列表(0条)

    保存