Python爬虫可以爬取什么

Python爬虫可以爬取什么,第1张

Python爬虫可以爬取的东西有很多,Python爬虫怎么学?简单的分析下:

如果你仔细观察,就不难发现,懂爬虫、学习爬虫的人越来越多,一方面,互联网可以获取的数据越来越多,另一方面,像 Python这样的编程语言提供越来越多的优秀工具,让爬虫变得简单、容易上手。

利用爬虫我们可以获取大量的价值数据,从而获得感性认识中不能得到的信息,比如:

知乎:爬取优质答案,为你筛选出各话题下最优质的内容。

淘宝、京东:抓取商品、评论及销量数据,对各种商品及用户的消费场景进行分析。

安居客、链家:抓取房产买卖及租售信息,分析房价变化趋势、做不同区域的房价分析。

拉勾网、智联:爬取各类职位信息,分析各行业人才需求情况及薪资水平。

雪球网:抓取雪球高回报用户的行为,对股票市场进行分析和预测。

爬虫是入门Python最好的方式,没有之一。Python有很多应用的方向,比如后台开发、web开发、科学计算等等,但爬虫对于初学者而言更友好,原理简单,几行代码就能实现基本的爬虫,学习的过程更加平滑,你能体会更大的成就感。

掌握基本的爬虫后,你再去学习Python数据分析、web开发甚至机器学习,都会更得心应手。因为这个过程中,Python基本语法、库的使用,以及如何查找文档你都非常熟悉了。

对于小白来说,爬虫可能是一件非常复杂、技术门槛很高的事情。比如有人认为学爬虫必须精通 Python,然后哼哧哼哧系统学习 Python 的每个知识点,很久之后发现仍然爬不了数据;有的人则认为先要掌握网页的知识,遂开始 HTMLCSS,结果入了前端的坑,瘁……

但掌握正确的方法,在短时间内做到能够爬取主流网站的数据,其实非常容易实现,但建议你从一开始就要有一个具体的目标。

在目标的驱动下,你的学习才会更加精准和高效。那些所有你认为必须的前置知识,都是可以在完成目标的过程中学到的。这里给你一条平滑的、零基础快速入门的学习路径。

1学习 Python 包并实现基本的爬虫过程

2了解非结构化数据的存储

3学习scrapy,搭建工程化爬虫

4学习数据库知识,应对大规模数据存储与提取

5掌握各种技巧,应对特殊网站的反爬措施

6分布式爬虫,实现大规模并发采集,提升效率

学习 Python 包并实现基本的爬虫过程

大部分爬虫都是按“发送请求——获得页面——解析页面——抽取并储存内容”这样的流程来进行,这其实也是模拟了我们使用浏览器获取网页信息的过程。

Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,建议从requests+Xpath 开始,requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。

如果你用过 BeautifulSoup,会发现 Xpath 要省事不少,一层一层检查元素代码的工作,全都省略了。这样下来基本套路都差不多,一般的静态网站根本不在话下,豆瓣、糗事百科、腾讯新闻等基本上都可以上手了。

当然如果你需要爬取异步加载的网站,可以学习浏览器抓包分析真实请求或者学习Selenium来实现自动化,这样,知乎、时光网、猫途鹰这些动态的网站也可以迎刃而解。

了解非结构化数据的存储

爬回来的数据可以直接用文档形式存在本地,也可以存入数据库中。

开始数据量不大的时候,你可以直接通过 Python 的语法或 pandas 的方法将数据存为csv这样的文件。

当然你可能发现爬回来的数据并不是干净的,可能会有缺失、错误等等,你还需要对数据进行清洗,可以学习 pandas 包的基本用法来做数据的预处理,得到更干净的数据。

学习 scrapy,搭建工程化的爬虫

掌握前面的技术一般量级的数据和代码基本没有问题了,但是在遇到非常复杂的情况,可能仍然会力不从心,这个时候,强大的 scrapy 框架就非常有用了。

scrapy 是一个功能非常强大的爬虫框架,它不仅能便捷地构建request,还有强大的 selector 能够方便地解析 response,然而它最让人惊喜的还是它超高的性能,让你可以将爬虫工程化、模块化。

学会 scrapy,你可以自己去搭建一些爬虫框架,你就基本具备爬虫工程师的思维了。

学习数据库基础,应对大规模数据存储

爬回来的数据量小的时候,你可以用文档的形式来存储,一旦数据量大了,这就有点行不通了。所以掌握一种数据库是必须的,学习目前比较主流的 MongoDB 就OK。

MongoDB 可以方便你去存储一些非结构化的数据,比如各种评论的文本,的链接等等。你也可以利用PyMongo,更方便地在Python中 *** 作MongoDB。

因为这里要用到的数据库知识其实非常简单,主要是数据如何入库、如何进行提取,在需要的时候再学习就行。

掌握各种技巧,应对特殊网站的反爬措施

当然,爬虫过程中也会经历一些绝望啊,比如被网站封IP、比如各种奇怪的验证码、userAgent访问限制、各种动态加载等等。

遇到这些反爬虫的手段,当然还需要一些高级的技巧来应对,常规的比如访问频率控制、使用代理IP池、抓包、验证码的OCR处理等等。

往往网站在高效开发和反爬虫之间会偏向前者,这也为爬虫提供了空间,掌握这些应对反爬虫的技巧,绝大部分的网站已经难不到你了

分布式爬虫,实现大规模并发采集

爬取基本数据已经不是问题了,你的瓶颈会集中到爬取海量数据的效率。这个时候,相信你会很自然地接触到一个很厉害的名字:分布式爬虫。

分布式这个东西,听起来很恐怖,但其实就是利用多线程的原理让多个爬虫同时工作,需要你掌握 Scrapy + MongoDB + Redis 这三种工具。

Scrapy 前面我们说过了,用于做基本的页面爬取,MongoDB 用于存储爬取的数据,Redis 则用来存储要爬取的网页队列,也就是任务队列。

所以有些东西看起来很吓人,但其实分解开来,也不过如此。当你能够写分布式的爬虫的时候,那么你可以去尝试打造一些基本的爬虫架构了,实现一些更加自动化的数据获取。

你看,这一条学习路径下来,你已然可以成为老司机了,非常的顺畅。所以在一开始的时候,尽量不要系统地去啃一些东西,找一个实际的项目(开始可以从豆瓣、小猪这种简单的入手),直接开始就好。

因为爬虫这种技术,既不需要你系统地精通一门语言,也不需要多么高深的数据库技术,高效的姿势就是从实际的项目中去学习这些零散的知识点,你能保证每次学到的都是最需要的那部分。

当然唯一麻烦的是,在具体的问题中,如何找到具体需要的那部分学习资源、如何筛选和甄别,是很多初学者面临的一个大问题。

以上就是我的回答,希望对你有所帮助,望采纳。

主流爬虫框架通常由以下部分组成:

1种子URL库:URL用于定位互联网中的各类资源,如最常见的网页链接,还有常见的文件资源、流媒体资源等。种子URL库作为网络爬虫的入口,标识出爬虫应该从何处开始运行,指明了数据来源。

2数据下载器:针对不同的数据种类,需要不同的下载方式。主流爬虫框架通畅提供多种数据下载器,用来下载不同的资源,如静态网页下载器、动态网页下载器、FTP下载器等。

3过滤器:对于已经爬取的URL,智能的爬虫需要对其进行过滤,以提高爬虫的整体效率。常用的过滤器有基于集合的过滤器、基于布隆过滤的过滤器等。

4流程调度器:合理的调度爬取流程,也可以提高爬虫的整体效率。在流程调度器中,通常提供深度优先爬取、广度优先爬取、订制爬取等爬取策略。同时提供单线程、多线程等多种爬取方式。

  从工作上应用于:Python开发、Python爬虫、大数据;

  从生活上,爬虫为我们增添了很多生活乐趣、便利了日常,比如说数据分析、简单地几行代码可以处理上千条Excel数据等等。

  Python开发

  自动化测试、自动化运维、WEB开发(网站开发)、人工智能都属于Python开发。

  自动化测试——用Python编写简单的实现脚本,运用在Selenium/lr中,实现自动化。

  自动化运维——Python对于服务器运维很重要。

  目前几乎所有Linux发行版中都自带了Python解释器,以使用Python脚本进行批量化的文件部署,和运行调整~

  而且Python提供了全方位的工具集合,结合Web,开发方便运维的工具会变得十分简单。

  WEB开发——Python最火的WEB开发框架Django在业界非常流行,其中的设计哲学也常用于其它程序语言设计的框架~

  如果是网站后端,使用它单间网站,后台服务比较容易维护。如我们常看到的:Gmail、知乎、豆瓣等~

  人工智能更是现在非常火的方向,现在释放出来的几个非常有影响力的AI框架,大多是Python的实现的。

  Python爬虫

  在当前信息大爆炸时代,大量的信息都通过Web来展示,为了获取这些数据,网络爬虫工程师就应运而生。

  不过这可不止我们日常的抓取数据和解析数据那些简单,还能够突破普通网站常见的反爬虫机制,以及更深层次的爬虫采集算法的编写。

  大家也可以去网上搜索别人通过爬虫做了什么有趣的事情:

  “用Python写的第一个程序,是爬取糗事百科上的、自动下载到本地、自动分成文件夹保存,当时就觉得,卧糟,太NB了~”

  “智联招聘爬虫,支持输入查询的职位关键词+城市。并将爬取到的数据分别用Exce和Python(matplotlib)做了数据分析及可视化……”

  “尝试爬取京东热卖、淘宝淘抢购(还是聚划算)的商品信息,没想到还挺简单的,主要是没做什么防爬虫措施……”

  Python大数据

  数据是一个公司的核心资产,从杂乱无章的数据中提取有价值的信息或者规律,成为了数据分析师的首要任务。

  Python的工具链为这项繁重的工作提供了极高的效率支持,数据分析建立在爬虫的基础上,我们便捷地爬下海量数据,才能进行分析。

1WEB开发

在国内,豆瓣一开始就使用Python作为web开发基础语言,知乎的整个架构也是基于Python语言,这使得web开发这块在国内发展的很不错。

尽管目前Python并不是做Web开发的首选,但一直都占有不可忽视的一席。Python中有各类Web框架,无论是简单而可以自由搭配的微框架还是全功能的大型MVC框架都一应俱全,这在需要敏捷开发的Web项目中也是十分具有优势的。广泛使用(或曾经广泛使用)Python提供的大型Web服务包括知乎、豆瓣、Dropbox等网站。加之Python本身的“胶水”特性,很容易实现在需要大规模性能级计算时整合其它语言,同时保留Web开发时的轻便快捷。

除此之外,Python中还有大量“开箱即用”的模块,用于与各种其它网站的对接等相关功能。如果希望开发个微信公众号相关功能,wechat-sdk/weixin-python等包,能够使你几乎完全不用管文档中提及的各种服务器交互细节,专注于功能实现即能完成开发。

目前,国内的Python web开发主要有两个技术栈:

(1)Django

Django是一个高级的敏捷web开发框架,如果学会了,撸一个网站很快。当然如果纯粹比撸网站的速度,基于ruby的Ruby on rails显然更快,但是Django有一个优势就是性能优秀,更适合国内网站的应用场景。国外的著名社区Pinterest早期也是基于Django开发的,承受了用户快速增长的冲击。所以说如果你想快速开发一个网站,还能兼顾APP客户端的API调用需求,Django是可以信赖的。

(2)Flask

相对于Django,Flask则是一个轻量级的web框架,Flask的最大的优势是性能优越,适合配合手机客户端开发后台API服务。国内基于Flask的Restful API服务这快很火,也是需求最大的。知名的比如百度、网易、小米、陌陌等等很多公司都有基于Flask的应用部署。当然,如果你想做一个传统的web网站,还是建议使用Django,Flask的优势是后端、API,不适合构建全功能网站。

2网络爬虫

网络爬虫是Python比较常用的一个场景,国际上,google在早期大量地使用Python语言作为网络爬虫的基础,带动了整个Python语言的应用发展。以前国内很多人用采集器搜刮网上的内容,现在用Python收集网上的信息比以前容易很多了。

Python在这个方面有许多工具上的积累,无论是用于模拟HTTP请求的Requests、用于HTML DOM解析的PyQuery/BeautifulSoup、用于自动化分布式爬取任务的Scrapy,还是用于最简化数据库访问的各种ORM,都使得Python成为数据爬取的首选语言之一。特别是,爬取后的数据分析与计算是Python最为擅长的领域,非常容易整合。目前Python比较流行的网络爬虫框架是功能非常强大的scrapy。

3人工智能与机器学习

人工智能是现在非常火的一个方向,AI热潮让Python语言的未来充满了无限的潜力。现在释放出来的几个非常有影响力的AI框架,大多是Python的实现,为什么呢?

因为Python足够动态、具有足够性能,这是AI技术所需要的技术特点。比如基于Python的深度学习库、深度学习方向、机器学习方向、自然语言处理方向的一些网站基本都是通过Python来实现的。机器学习,尤其是现在火爆的深度学习,其工具框架大都提供了Python接口。Python在科学计算领域一直有着较好的声誉,其简洁清晰的语法以及丰富的计算工具,深受此领域开发者喜爱。

早在深度学习以及Tensorflow等框架流行之前,Python中即有scikit-learn,能够很方便地完成几乎所有机器学习模型,从经典数据集下载到构建模型只需要简单的几行代码。配合Pandas、matplotlib等工具,能很简单地进行调整。

而Tensorflow、PyTorch、MXNet、Keras等深度学习框架更是极大地拓展了机器学习的可能。使用Keras编写一个手写数字识别的深度学习网络仅仅需要寥寥数十行代码,即可借助底层实现,方便地调用包括GPU在内的大量资源完成工作。

值得一提的是,无论什么框架,Python只是作为前端描述用的语言,实际计算则是通过底层的C/C++实现。由于Python能很方便地引入和使用C/C++项目和库,从而实现功能和性能上的扩展,这样的大规模计算中,让开发者更关注逻辑于数据本身,而从内存分配等繁杂工作中解放出来,是Python被广泛应用到机器学习领域的重要原因。

4数据分析处理

数据分析处理方面,Python有很完备的生态环境。“大数据”分析中涉及到的分布式计算、数据可视化、数据库 *** 作等,Python中都有成熟的模块可以选择完成其功能。对于Hadoop-MapReduce和Spark,都可以直接使用Python完成计算逻辑。这无论对于数据科学家还是对于数据工程师而言都是十分便利的。

5服务器运维及其它小工具

Python对于服务器运维而言也有十分重要的用途。由于目前几乎所有Linux发行版中都自带了Python解释器,使用Python脚本进行批量化的文件部署和运行调整都成了Linux服务器上很不错的选择。Python中也包含许多方便的工具,从调控ssh/sftp用的paramiko,到监控服务用的supervisor,再到bazel等构建工具,甚至conan等用于C++的包管理工具,Python提供了全方位的工具集合,而在这基础上,结合Web,开发方便运维的工具会变得十分简单。

更有意思的是,Python社区的开发者们还制作了诸如itchat这样的开发工具包,你大可以用微信来管理服务器或是各种服务的运行。想想看,一个微信机器人,能够在出现异常时,又或者每天固定时刻汇报服务器或是程序运行情况,甚至包含用matplotlib/seaborn绘制的图表,一目了然,而你对它发上简简单单一句话,即可完成对服务器的调整。

想学的童鞋可以加企鹅裙前三位是227,中间是435,后三位是450可以 视频资料免费分享交流经验和讲解行情

6桌面程序

Python也可以用于桌面软件开发(如sublime text等),甚至移动端开发(参看kivy)。Python简洁方便,各种工具包齐全的环境,能大幅度减少开发者的负担。著名的UI框架QT有Python语言的实现版本PyQT。Python简单易用的特性加上QT的优雅,可以很轻松的开发界面复杂的桌面程序,并且能轻松实现跨平台特性。

7多媒体应用

可以用Python里面的PIL、Piddle、ReportLab 等模块对图象、声音、视频、动画等进行处理,还可以用Python生成动态图表和统计分析图表。另外,还可以利用PyOpenGl模块非常快速有效的编写出三维场景。

背景

爬虫形势

Web安全形势一直不容乐观, 根据 Globaldots的2018年机器人报告 , 爬虫占据Web流量的42%左右

为什么要反爬

防资源过度消耗

大量的机器人访问网站, 设想你的网站有42%的流量都不是真的人访问的 相当一部分还会大量占用后台的网络带宽, 服务器计算, 存储资源

防黄牛党

航空公司占座: 黄牛党利用恶意爬虫遍历航空公司的低价票,同时批量发起机器请求进行占座,导致航班座位资源被持续占用产生浪费,最终引发航班空座率高对航空公司造成业务损失,并且损害正常用户的利益。

防薅羊毛党

黄牛党在电商活动时针对有限的高价值商品的限时秒杀、优惠活动等可牟利场景,批量发起机器请求来模拟正常的交易,再将商品、资源进行倒卖从中赚取差价,导致电商企业的营销资源无法触达正常用户,而被黄牛牟取暴利。

防黑客

核心接口被刷: 登录、注册、短信等业务环节作为业务中的关键节点,相关接口往往会被黑客利用,为后续的欺诈行为作准备。

私信菜鸟007即可获取数十套PDF!

为什么需要日志分析

找出隐藏更深的机器人

爬虫与反爬虫是一个攻与防的过程, 根据前述报告, 高级机器人占据了74%的比例(剩余是比较简单的机器人), 而根据 FileEye M-Trends 2018报告 ,企业组织的攻击从发生到被发现,一般经过了多达101天,其中亚太地区问题更为严重,一般网络攻击被发现是在近498(超过16个月)之后。有了日志才能更好的找出隐藏很深的坏机器人

了解机器人并区分对待

爬虫也分好与坏, 搜索引擎来查询, 才可以达到SEO效果并带来更多有价值的访问 通过日志可以帮助管理员更好的区分哪些是好的机器人, 并依据做出更加适合自己的反爬配置

保留报案证据

发现非法攻击的机器人, 可以保留攻击者信息与路径, 作为报警的重要证据

增强运维效率

基于日志可以发现异常, 并能快速报警并采取行动

更多附加功能

依托日志服务的其他功能, 可以发挥日志的更大价值

阿里云反爬管理 - 实时日志分析概述

阿里云反爬管理

云盾Anti-Bot Service是一款网络应用安全防护产品,专业检测高级爬虫,降低爬虫、自动化工具对网站的业务影响。 产品提供从Web、App到API接口的一整套全面的恶意Bot防护解决方案,避免某一环节防护薄弱导致的安全短板。

阿里云日志服务

阿里云的日志服务(log service)是针对日志类数据的一站式服务,无需开发就能快捷完成海量日志数据的采集、消费、投递以及查询分析等功能,提升运维、运营效率。日志服务主要包括 实时采集与消费、数据投递、查询与实时分析 等功能,适用于从实时监控到数据仓库的各种开发、运维、运营与安全场景:

目前,阿里云WAF与日志服务打通,对外开发Web访问与攻击日志。提供近实时的网站具体的日志自动采集存储、并提供基于日志服务的查询分析、报表报警、下游计算对接与投递的能力。

发布地域

适用客户

功能优势

反爬日志实时查询分析服务具有以下功能优势:

开通前提

限制说明

反爬管理所存储的日志库属于专属的日志库,有如下限制:

使用场景

1追踪机器人爬取与封禁日志,溯源安全威胁:

查看Top 100的爬取机器人列表:

2 实时正常可信Web请求活动,洞察状态与趋势:

查看PV/UV访问趋势的SQL:

3 快速了解安全运营效率,即时反馈处理:

查看有效请求与拦截率趋势的SQL:

4 输出安全网络日志到自建数据与计算中心

进一步参考

我们会陆续发布WAF安全日志分析的最佳时间, 这里可以进一步参考相关用户手册:

爬虫,其实网络爬虫(Webcrawler)的一种简写,爬虫就是预先制定的规则,自动地抓取万维网网页页面信息的程序或者脚本,它们被广泛用于互联网搜索引擎或其他类似网站,可以自动采集所有其能够访问到的页面内容,以获取或更新这些网站的内容和检索方式。从功能上来讲,爬虫一般分为数据采集,处理,储存三个部分。

在爬虫技术开发方面,爬虫分为三类爬虫:

(1)分布式爬虫:Nutch

(2)JAVA爬虫:Crawler4j、WebMagic、WebCollector

(3)非JAVA爬虫:scrapy(基于Python语言开发)

分布式爬虫一般应用于大量数据爬取,用于爬取海量URL的场景。

java爬虫是发展的最为完善的一种爬虫。由于java语言的健壮性和整个生态的原因,java爬虫发展出了一整台爬虫的机制,不管是类库、开发、调试,整个过程都是十分规范和简单的。并且有很多开源项目可以参考和使用,社区非常活跃和完善。能够适用于很多企业开发应用场景。

Python爬虫,python可以用30行代码,完成JAVA50行代码干的任务。python写代码的确快,但是在调试代码的阶段,python代码的调试往往会耗费远远多于编码阶段省下的时间。使用python开发,要保证程序的正确性和稳定性,就需要写更多的测试模块。当然如果爬取规模不大、爬取业务不复杂,使用python这种爬虫也是蛮不错的,可以轻松完成爬取任务。

所以,如果提问者需要学习爬虫,可以先考虑下自己学爬虫的目的是什么比较好,根据你的目的去进行技术选型才是最省力的一种,不过一般作为个人开发者的话,Python还是最实用的。

欢迎分享,转载请注明来源:内存溢出

原文地址:https://54852.com/zaji/13493337.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2025-09-01
下一篇2025-09-01

发表评论

登录后才能评论

评论列表(0条)

    保存