
2、其次打开生成正交设计窗口,输入因子名称、因子标签,然后点击添加,点击下方的定义值,打开定义值窗口,设置值和标签。
3、然后在数据文件中,数据集名称输入内容,接着勾选将随机数种子重置为300,然后点击确定按钮。
4、最后生成并输出分析结果,打开透视托盘图,即可查看最佳组合。在日常试验中,对于只考察一个或两个因素的试验来说,由于控制的因素较少,试验设计和实施都比较的简单。但当一个试验出现超过三个因素时,试验就变得非常繁琐,全部实施起来也非常困难。
当然,这些问题不只我们遇到了,统计学家们早已发现这一问题,并设计出简化试验的各种方法。本文要介绍的就是最为人所知的——正交试验法。
正交试验的一般流程包括以下几个步骤:①确定研究因素;②选择指标水平;③制作成正交试验表格;④进行试验;⑤试验结果分析
案例背景: 在一项研究中,研究人员想分析温度,保温时间和工件重量三种因素对d簧质量的影响。
①确定研究因素
根据上面的研究背景可以确定,本次的研究因素共有三个,分别是:温度,保温时间和工件重量。
②选择指标水平
确定因素后,还要对每个因素的水平进行设定,通常是依据专业知识或参考过往的文献经验来设定。
本例中的三种因素和水平数据设定如下:
③制作正交试验表格
确定好因素与水平、准备工作就基本完成,下面要制作正交试验表格,再将数据对应填入表格。案例中共涉及3个因子(因素),每个因素均有3个水平,表格设置如下:
④进行 试验
经过了漫长的试验……记录试验结果,整理数据。
⑤试验结果分析
得到试验结果后,将试验数据与结果整理到表格中,上传到SPSSAU分析。
下面开始对结果进行分析,通常是用方差分析。一般情况下,试验的因素为两个或者三个。如果超过三个,则需要使用多因素方差分析。不考虑交互作用,分析各因素对d簧d性的影响。
结果显示,保温时间,工件重量会对d簧d性产生显著性影响,而温度并不会对d性产生影响。并且工件重量是影响d性的最重要因素。
如果某因素呈现出显著性,说明该因素会对Y产生显著性差异,具体可以通过单因素方差分析进一步研究。
登录 SPSSAU官网 体验在线数据分析正交实验设计 当析因设计要求的实验次数太多时,一个非常自然的想法就是从析因设计的水平组合中,选择一部分有代表性水平组合进行试验,试验设计之后,先对试验记录的数据进行直观分析,获得最佳的水平组合,以及因子的影响程度,再通过数据的方差分析检验因子对实验指标是否有显著影响,这样就可以找到有显著影响的因子的最佳水平组合,在该组合下进行的实验也就是产出率最高的方案~
我们知道如果有很多的因素变化制约着一个事件的变化,那么为了弄清楚各因素对实验结果的重要性,必须通过做实验验证(仿真也可以说是实验,只不过试验设备是计算机),如果因素很多,而且每种因素又有多种变化(专业称法是:水平),那么实验量会非常的大,显然是不可能每一个实验都做的。正交试验法就是一种能够大幅度减少试验次数而且并不会降低试验可行度的方法。首先需要选择一张和你的实验因素水平相对应的正交表,已经有数学家制好了很多相应的表,你只需找到对应你需要的就可以了。所谓正交表,也就是一套经过周密计算得出的现成的实验方案,他告诉你每次实验时,用那几个水平互相匹配进行实验,这套方案的总实验次数是远小于每种情况都考虑后的实验次数的。比如3水平4因素表就只有9行,远小于遍历试验的81次;我们同理可推算出如果因素水平越多,试验的精简程度会越高。
建立好实验表后,根据表格做实验,然后就是数据处理了。由于试验次数大大减少,使得试验数据处理非常重要。首先可以从所有的实验数据中找到最优的一个数据,当然,这个数据肯定不是最佳匹配数据,但是肯定是最接近最佳的了。接下来将各个因素当中同水平的实验值加和(注:正交表的一个特点就是每个水平在整个实验中出现的次数是相同的),就得到了各个水平的实验结果表,从这个表当中又可以得到一组最优的因素,通过比较前一个因素,可以获得因素变化的趋势,指导更进一步的试验。各个因素中不同水平试验值之间也可以进行如极差、方差等计算,可以获知这个因素的敏感度,等等等等,还有很多处理数据的方法。然后再根据统计数据,确定下一步的试验,这次实验的范围就很小了,目的就是确定最终的最优值。当然,如果因素水平很多,这种寻优过程可能不止一次。
在生产和科研中,为了研制新产品,改革生产工艺,寻找优良的生产条件,需要做许多多因素的实验。 在方差分析中对于一个或两个因素的实验,我们可以对不同因素的所有可能的水平组合做实验,这叫做全面实验。当因素较多时,虽然理论上仍可采用前面的方法进行全面实验后再做相应的方差分析,但是在实际中有时会遇到实验次数太多的问题。例如,生产化工产品,需要提高收率(产品的实际产量与理论上投入的最大产量之比),认为反应温度的高低、加碱量的多少、催化剂种类等多种因素,都是造成收率不稳的主要原因。根据以往经验,选择温度的三个水平:80℃、85℃、90℃;加碱量的三个水平:35、48、55(kg);催化剂的三个水平:甲、乙、丙三种。如果做全面实验,则需3×3×3=27次。如果有3个因素,每个因素选取4个实验水平的问题,在每一种组合下只进行一次试验,所有不同水平的组合有4×4×4=64种,如果6个因素,5个实验水平,全面实验的次数是5×5×5×5×5×5=15,625次。对于这样一些问题,设计全面的实验往往耗时、费力,往往很难做到。因此,如何设计多因素实验方案,选择合理的实验设计方法,使之既能减少实验次数,又能收到较好的效果。“正交实验法”就是研究与处理多因素实验的一种科学有效的方法。
正交实验法在西方发达国家已经得到广泛的应用,对促进经济的发展起到了很好的作用。在我国,正交实验法的理论研究工作已有了很大的进展,在工农业生产中也正在被广泛推广和应用,使这种科学的方法能够为经济发展服务。
正交试验设计是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分析因式设计的主要方法。 是一种高效率、快速、经济的实验设计方法。
先列因素水平表:
水平 因素A 因素B 因素C 因素D
1
2
3
再列正交结果表:
实验序号 因素A 因素B 因素C 因素D 结果
1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1
K1 123结果相加 147结果相加 168结果相加 159结果相加
K2 456结果相加 258结果相加 249结果相加 267结果相加
K3 789结果相加 369结果相加 357结果相加 348结果相加
因素A下K最大减K最小 因素B下K最大减K最小 因素C下K最大减K最小 因素D下K最大减K最小
简单的来说,K1值就是在每个因素下对应水平为1的实验结果的和,K2就是在每个因素下对应水平为2的实验结果的和,R就是每个因素下K的最大值减最小值。
当析因设计要求的实验次数太多时,一个非常自然的想法就是从析因设计的水平组合中,选择一部分有代表性水平组合进行试验。因此就出现了分式析因设计(fractional factorial designs),但是对于试验设计知识较少的实际工作者来说,选择适当的分式析因设计还是比较困难的。
正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。是一种高效率、快速、经济的实验设计方法。日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。例如作一个三因素三水平的实验,按全面实验要求,须进行33=27种组合的实验,且尚未考虑每一组合的重复数。若按L9(3)3正交表按排实验,只需作9次,按L18(3)7正交表进行18次实验,显然大大减少了工作量。因而正交实验设计在很多领域的研究中已经得到广泛应用。
1.正交表
正交表是一整套规则的设计表格,用 。L为正交表的代号,n为试验的次数,t为水平数,c为列数,也就是可能安排最多的因素个数。例如L9(34), (表11),它表示需作9次实验,最多可观察4个因素,每个因素均为3水平。一个正交表中也可以各列的水平数不相等,我们称它为混合型正交表,如L8(4×24) (表12),此表的5列中,有1列为4水平,4列为2水平。根据正交表的数据结构看出,正交表是一个n行c列的表,其中第j列由数码1,2,… Sj 组成,这些数码均各出现N/S 次,例如表11中,第二列的数码个数为3,S=3 ,即由1、2、3组成,各数码均出现 次。
正交表具有以下两项性质:
(1)每一列中,不同的数字出现的次数相等。例如在两水平正交表中,任何一列都有数码“1”与“2”,且任何一列中它们出现的次数是相等的;如在三水平正交表中,任何一列都有“1”、“2”、“3”,且在任一列的出现数均相等。
(2)任意两列中数字的排列方式齐全而且均衡。例如在两水平正交表中,任何两列(同一横行内)有序对子共有4种:(1,1)、(1,2)、(2,1)、(2,2)。每种对数出现次数相等。在三水平情况下,任何两列(同一横行内)有序对共有9种,11、12、13、21、22、23、31、32、33,且每对出现数也均相等。
以上两点充分的体现了正交表的两大优越性,即“均匀分散性,整齐可比”。通俗的说,每个因素的每个水平与另一个因素各水平各碰一次,这就是正交性。
2 交互作用表 每一张正交表后都附有相应的交互作用表,它是专门用来安排交互作用试验。表14就是L8(27)表的交互作用表。
安排交互作用的试验时,是将两个因素的交互作用当作一个新的因素,占用一列,为交互作用列,从表14中可查出L8(27)正交表中的任何两列的交互作用列。表中带( )的为主因素的列号,它与另一主因素的交互列为第一个列号从左向右,第二个列号顺次由下向上,二者相交的号为二者的交互作用列。例如将A因素排为第(1)列,B因素排为第(2)列,两数字相交为3,则第3列为A×B交互作用列。又如可以看到第4列与第6列的交互列是第2列,等等。
3.正交实验的表头设计 表头设计是正交设计的关键,它承担着将各因素及交互作用合理安排到正交表的各列中的重要任务,因此一个表头设计就是一个设计方案。
表头设计的主要步骤如下:
(1)确定列数 根据试验目的,选择处理因素与不可忽略的交互作用,明确其共有多少个数,如果对研究中的某些问题尚不太了解,列可多一些,但一般不宜过多。当每个试验号无重复,只有1个试验数据时,可设2个或多个空白列,作为计算误差项之用。
(2)确定各因素的水平数 根据研究目的,一般二水平(有、无)可作因素筛选用;也可适用于试验次数少、分批进行的研究。三水平可观察变化趋势,选择最佳搭配;多水平能以一次满足试验要求。
(3)选定正交表 根据确定的列数©与水平数(t)选择相应的正交表。例如观察5个因素8个一级交互作用,留两个空白列,且每个因素取2水平,则适宜选L16(215)表。由于同水平的正交表有多个,如L8(27)、L12(211)、L16(215),一般只要表中列数比考虑需要观察的个数稍多一点即可,这样省工省时。
(4)表头安排 应优先考虑交互作用不可忽略的处理因素,按照不可混杂的原则,将它们及交互作用首先在表头排妥,而后再将剩余各因素任意安排在各列上。例如某项目考察4个因素A、B、C、D及A×B交互作用,各因素均为2水平,现选取L8(27)表,由于AB两因素需要观察其交互作用,故将二者优先安排在第1、2列,根据交互作用表查得A×B应排在第3列,于是C排在第4列,由于A×C交互在第5列,B×C交互作用在第6列,虽然未考查A×C与B×C,为避免混杂之嫌,D就排在第7列。
(5)组织实施方案 根据选定正交表中各因素占有列的水平数列,构成实施方案表,按实验号依次进行,共作n次实验,每次实验按表中横行的各水平组合进行。例如L9(34)表,若安排四个因素,第一次实验A、B、C、D四因素均取1水平,第二次实验A因素1水平,B、C、D取2水平,……第九次实验A、B因素取3水平,C因素取2水平,D因素取1水平。实验结果数据记录在该行的末尾。因此整个设计过程我们可用一句话归纳为:“因素顺序上列、水平对号入座,实验横着作”。
4.二水平有交互作用的正交实验设计与方差分析
例8 某研究室研究影响某试剂回收率的三个因素,包括温度、反应时间、原料配比,每个因素都为二水平,各因素及其水平见表16。选用L8(27)正交表进行实验,实验结果见表17。
首先计算Ij 与IIj ,Ij为第j列第1水平各试验结果取值之和,IIj为第j列第2水平各试验结果取值之和。然后进行方差分析。过程为:
求:总离差平方和
各列离差平方和 SSj=
本例各列离均差平方和见表10最底部一行。即各空列SSj之和。即误差平方和
自由度v为各列水平数减1,交互作用项的自由度为相交因素自由度的乘积。
分析结果见表18。
从表18看出,在α=005水准上,只有C因素与A×B交互作用有统计学意义,其余各因素均无统计学意义,A因素影响最小,考虑到交互作用A×B的影响较大,且它们的二水平为优。在C2的情况下, 有B1A2和B1,A1两种组合状况下的回收率最高。考虑到B因素影响较A因素影响大些,而B中选B1为好,故选A2B1。这样最后决定最佳配方为A2B1C2,即80℃,反应时间25h,原料配比为12:1。
如果使用计算机进行统计分析,在数据是只需要输入试验因素和实验结果的内容,交互作用界的内容不用输入,然后按照表头定义要分析的模型进行方差分析。
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)