正交实验的显著性怎么算

正交实验的显著性怎么算,第1张

你好,经过我查阅相关资料得知
正交实验的显著性的算法是:首先可以从所有的实验数据中找到最优的一个数据,接下来将各个因素当中同水平的实验值加和,就得到了各个水平的实验结果表。从这个表当中又可以得到一组最优的因素,通过比较前一个因素,可以获得因素变化的趋势,指导更进一步的试验。

什么是统计上的显著性

显著性,又称统计显著性(Statistical significance), 是指零假设为真的情况下拒绝零假设所要承担的风险水平,又叫概率水平,或者显著水平。 显著性的含义是指两个群体的态度之间的任何差异是由于系统因素而不是偶然因素的影响。我们假定控制了可能影响两个群体之间差异的所有其他因素,因此,余下的解释就是我们所推断的因素,而这个因素不能够100%保证,所以有一定的概率值,叫显著性水平(Significant level) 扩展资料 统计学的部分检验方法 1、单因素方差分析 用于完全随机设计的多个样本均值间的比较,其统计推断是推断(H0)各样本所代表的各总体均数是否相等。方差分析方法适用于两组均数的比较。方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。 2、曼惠特尼检验 曼-惠特尼秩和检验:假设两个样本分别来自除了总体均值以外完全相同的两个总体,目的是检验这两个总体的均值是否有显著的差别。(分布存在差异) 3、多样本非参数检验 Kruskal-Wallis检验实质是两独立样本的曼-惠特尼U检验在多个样本下的推广。(秩和检验)Jonckheere-Terpstra检验有点像KW检验后进一步检验位置是否存在递增递减关系。适合不同单位时间的行为序列mmse的比较 检验统计量的构造与曼惠特尼相似,如果一个样本的观测值小于另一个样本的个数较多或较少,那么,多样本的位置之间有大小关系。(J反映了单调的趋势,J越大单调趋势越显著) 参考资料来源:百度百科-显著性

什么是双尾显著性检验

通常,双尾测试用于实验研究,没有强烈的方向期望,或者有两个竞争预测。 例如,当一个理论预测分数增加而另一个理论预测分数减少时,应该使用双尾检验。 应该使用单尾测试的情况包括在进行实验之前进行方向预测,或者强烈要求进行方向预测时。

扩展资料:

显著性检验的基本思想可以用小概率原理来解释。 1、小概率原理:小概率事件在一次试验中是几乎不可能发生的,假若在一次试验中小概率事件事实上发生了。那只能认为该事件不是来自我们假设的总体,也就是认为我们对总体所做的假设不正确。 2、观察到的显著水平:由样本资料计算出来的检验统计量观察值所截取的尾部面积。这个概率越小,反对原假设,认为观察到的差异表明真实的差异存在的证据便越强,观察到的差异便越加理由充分地表明真实差异存在。 3、检验所用的显著水平:针对具体问题的具体特点,事先规定这个检验标准。 4、在检验的 *** 作中,把观察到的显著性水平与作为检验标准的显著水平标准比较,小于这个标准时,得到了拒绝原假设的证据,认为样本数据表明了真实差异存在。大于这个标准时,拒绝原假设的证据不足,认为样本数据不足以表明真实差异存在。 5、检验的 *** 作可以用稍许简便一点的作法:根据所提出的显著水平查表得到相应的值,称作临界值,直接用检验统计量的观察值与临界值作比较,观察值落在临界值所划定的尾部内,便拒绝原假设;观察值落在临界值所划定的尾部之外,则认为拒绝原假设的证据不足。 参考资料来源:百度百科 - 显著性检验

什么叫显著性检验

显著性检验的原理就是“小概率事件实际不可能性原理”来接受或否定假设。其基本步骤如下:
第一:提出统计假设H0和HA。
第二:构造统计量t,并根据样本资料计算t值。
第三:根据t分布的自由度,确定理论临界值t005和t001。

P值和显著性有什么区别

显著性水平与P 值的区别: 1、表示含义不同: (1)显著性水平是假设检验中的一个概念,是指当原假设为正确时人们却把它拒绝了的概率或风险。 (2)P值即概率,反映某一事件发生的可能性大小。实际上,P值不能赋予数据任何重要性,只能说明某事件发生的几率。 2、取值含义不同: (1)显著性水平是公认的小概率事件的概率值,必须在每一次统计检验之前确定,通常取α=005或α=001。这表明,当作出接受原假设的决定时,其正确的可能性(概率)为95%或99%。 (2)统计学根据显著性检验方法所得到的P 值,一般以P < 005 为有统计学差异, P<001 为有显著统计学差异,P<0001为有极其显著的统计学差异。其含义是样本间的差异由抽样误差所致的概率小于005 、001、0001。 扩展资料P值计算方法 1、P值是: 1) 一种概率,一种在原假设为真的前提下出现观察样本以及更极端情况的概率。 2) 拒绝原假设的最小显著性水平。 3) 观察到的(实例的)显著性水平。 4) 表示对原假设的支持程度,是用于确定是否应该拒绝原假设的另一种方法。 2、P值的计算: 一般地,用X 表示检验的统计量,当H0为真时,可由样本数据计算出该统计量的值C,根据检验统计量X的具体分布,可求出P值。具体地说: 左侧检验的P值为检验统计量X 小于样本统计值C 的概率,即:P = P{ X < C} 右侧检验的P值为检验统计量X 大于样本统计值C 的概率:P = P{ X > C} 双侧检验的P值为检验统计量X 落在样本统计值C 为端点的尾部区域内的概率的2 倍:P = 2P{ X > C} (当C位于分布曲线的右端时) 或P = 2P{ X C} 。 参考资料来源:百度百科-显著性水平 参考资料来源:百度百科-假设检验中的P值

什么事显著性分析

1概念与意义 在假设检验中,显著性水平显著性水平显著性水平显著性水平((((Significant level,,,,用用用用α表示表示表示表示))))的确定是假设检验中至关重要的问题。 显著性水平是在原假设成立时检验统计量的值落在某个极端区域的概率值。因此,如果取α= 005,如果计算出的p值小于α ,则可认为原假设是一个不可能发生的小概率事件。当然,如果真的发生了,则犯错误的可能性为5%。显然,显著性水平反映了拒绝某一原假设时所犯错误的可能性,或者说, α是指拒绝了事实上正确的原假设的概率。 2通常的取值 α值一般在进行假设检验前由研究者根据实际的需要确定。 常用的取值是005或001。对于前者,相当于在原假设事实上正确的情况下,研究者接受这一假设的可能性为95%;对于后者,则研究者接受事实上正确的原假设的可能性为99%。 显然,降低α值可以减少拒绝原假设的可能性。因此,在报告统计分析结果时,必须给出α值。 3进行统计推断 在进行假设检验时,各种统计软件均会给出检验统计量观测值以及原假设成立时该检验统计量取值的相伴概率(即检验统计量某特定取值及更极端可能值出现的概率,用p表示)。 p值是否小于事先确定的α值,是接受或拒绝原假设的依据。 如果p值小于事先已确定的α值,就意味着检验统计量取值的可能性很小,进而可推断原假设成立的可能性很小,因而可以拒绝原假设。相反,如果p值大于事先已确定的α值,就不能拒绝原假设。 在计算机技术十分发达,以及专业统计软件功能十分强大的今天,计算检验统计量及其相伴概率是一件十分容易的事情。 然而,在20世纪90年代以前,只有服从标准正态分布的检验统计量,人们可以直接查阅事先准备好的标准正态分布函数表,从中获得特定计算结果的相伴概率。而对于的服从t-分布、F-分布、卡方分布或其它特殊的理论分布的检验统计量(大多数的假设检验是这样),人们无法直接计算相伴概率。人们通常查阅各类假设检验的临界值表进行统计推断。这些表格以自由度和很少的几个相伴概率(通常为01、005和001)为自变量,以检验统计量的临界值为函数排列。 在进行统计推断时,人们使用上述临界值表根据事先确定的显著性水平,查阅对应于某一自由度和特定相伴概率的检验统计量的临界值,然后将所计算出的检验统计量与该临界值相比较。如果检验统计量的计算值大于临界值,即实际的相伴概率小于事先规定的显著性水平,便可拒绝原假设。否则,可接受原假设。 4举例 在根据显著性水平进行统计推断时,应注意原假设的性质。 以二元相关分析为例,相关分析中的原假设是“相关系数为零”(即2个随机变量间不存在显著的相关关系)。如果计算出的检验统计量的相伴概率(p值)低于事先给定α值(如005),就可以认为“相关系数为零”的可能性很低, 既2个随机变量之间存在显著的相关关系。 在正态分布检验时,原假设是“样本数据来自服从正态分布的总体”。此时,如果计算出的检验统计量的相伴概率(p值)低于事先给定α值(如005),则表明数据不服从正态分布。只有p值高于α值时,数据才服从正态分布。这与相关分析的假设检验不同。 5作者在描述相关分析结果时常有的失误 仅给出相关系数的值,而不给出显著性水平。这就无法判断2个随机变量间的相关性是否显著。 有时作者不是根据显著性水平判断相关关系是否显著,而是根据相关系数的大小来推断(相关系数越近1,则相关关系越显著)。问题是,相关系数本身是一个基于样本数据计算出的观测值,其本身的可靠性尚需检验。 此外,作者在论文中常常用“显著相关”和“极显著相关”来描述相关分析结果,即认为p值小于005就是显著相关关系(或显著相关),小于001就是极显著相关关系(或极显著相关)。 在假设检验中,只有 “显著”和 “不显著”,没有“极显著”这样的断语。只要计算出的检验统计量的相伴概率(p值)低于事先确定的α值,就可以认为检验结果“显著”(相关分析的原假设是“相关系数为零”,故此处的“显著”实际意味着“相关系数不为零”,或说“2个随机变量间有显著的相关关系”);同样,只要计算出的检验统计量的相伴概率(p值)高于事先确定的α值,就可以认为检验结果“不显著”。 在进行相关分析时,不能同时使用005和001这2个显著性水平来决定是否拒绝原假设,只能使用其中的1个。

sig在(005-01)这个范围内通常被称作边缘显著,意思是虽然没达到通常005的显著性水平,但很接近这个值,可以认为实际的差异还是有可能存在的,只要增大样本量就可以 因为我们通常是做双侧检验,因为你一般的假设是不假设方向的,只假设可能存在差异,即我们只猜测男女有差异,但具体是男大于女还是女大于男谁也说不准,你要同时可虑到两种可能性,所以对于005的显著性,正态分布两侧实际各占0025。

如果你很有信心,前人的研究中总是男大于女,这时候你可以单测检验,即把假设的005的拒绝域全部放在正态分布右侧,这时候,如果真的是男大于女,那你肯定要比双侧检验更容易发现这种差异,因为双侧检验的拒绝域在正态分布右侧实际上是0025,这个拒绝域更难达到。所以有人告诉你这个双侧条件下的0071在单侧检验下已经显著了。但我不推荐你用单侧,因为万一是女大于男呢?同样应该是有差异,但你会因为没有设置正态左侧的拒绝域而观察不到这个差异,另一方面讲,除非有理论和已有研究的支撑,否则轻易不要做单侧假设。 最后,你这个sig=0071完全可以说是边缘显著,你可以说你觉得他们真有性别差异,但有个前提,你需要做一个效果量的分析,如果这个性别差异效果量(t检验的效果量为cohen'D值,若D小于02,效果量小)比较大,此时表明你的研究还是有价值的,因为性别差异够大,虽然t检验不显著,但这有可能是样本量不够大所致,当增大样本量时,就会显著。

反过来,如果效果量小到微不足道,那你也别说什么边缘显著了,这时候研究价值已然不大。 对这方面知识你可以参考一些效果量的文献资料。

这张图里的方差分析F检验结果不显著。看显著性检验结果有两种方法。

1、根据F值判断。

SPSS输出的表格中“F”即样本的计算结果。之后考虑显著性检验的临界值α和F统计量的自由度,在F检验表中查找F的临界值(下表是α=01的F临界值表,如果α设定为005或001则应查找对应的F检验表)。最后,将SPSS计算出的F值与F临界值比较,若大于临界值则可以说在α的意义下结果显著,否则不显著。

2、根据Sig判断。

SPSS输出的Sig结果即将计算出的F值根据自由度转换为了P-Value,可以直接根据Sig判断是否显著,若Sig<α则结果显著,否则不显著,这一方法更方便。

在此基础上拓展一下,z检验、t检验、Chi-Square检验(卡方检验)等判断显著或进行假设检验的方式都是类似的,或者根据对应的检验表,或者根据P-Value。如果根据检验表判断,可分为三步:

第一步,计算统计量的观测值,例如此处的F值,这一步SPSS会直接输出;

第二步,查表,根据自由度和α找到临界值;

第三步,将SPSS输出的统计量观测值与查表所得临界值进行对比,得出结果。

相较之下,根据P-Value来判断则非常简单,SPSS已经根据样本计算并输出了P-Value,只需将P-Value和α对比即可。

此外在一些情况下,SPSS也会自动以星号()的数量对是否显著进行标记,例如做相关系数分析时,在001级别相关性显著会标注出“”,在005级别相关性显著标注“”等等。


欢迎分享,转载请注明来源:内存溢出

原文地址:https://54852.com/yw/12922310.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2025-08-28
下一篇2025-08-28

发表评论

登录后才能评论

评论列表(0条)

    保存