
频率=频数/总数。
在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数m称为事件A发生的频数。
某个组的频数与样本容量的比值也叫做这个组的频率。有了频数(或频率)就可以知道数的分布情况。
性质
1、当重复试验的次数n逐渐增大时,频率fn(A)呈现出稳定性,逐渐稳定于某个常数,这个常数就是事件A的概率。这种“频率稳定性”也就是通常所说的统计规律性。
2、频率:
(1)非负性:0小于等于fn(A)小于等于1。
(2)规范性:fn(Ω)=1 (注:Ω表示样本空间)。
(3)可加性。
3、频率不等同于概率由伯努利大数定律,当n趋向于无穷大的时候,频率fn(A)在一定意义下接近于概率P(A)。
在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目。如有一组测量数据,数据的总个数N=148最小的测量值xmin=003,最大的测量值xmax=3167,按组距为△x=3000将148个数据分为11组,其中分布在1505~1805范围内的数据有26个,则称该数据组的频数为26。
再如在314159265358979324中,‘9’出现的频数是3,出现的频率是3/18=167%
一般我们称落在不同小组中的数据个数为该组的频数,频数与总数的比为频率。
频率=频数/总量
例如:下图中从图上可以看看出,52的有2个人;57的有6个人;62的有8个人;67的有12个人;72的有8个人;77的有6个人,82的有4个人;87的有3个人;92的有1个人;97的有1个人。
所以,求52的频率=2/(2+6+8+12+8+6+4+3+1+1)
82的频率=4/(2+6+8+12+8+6+4+3+1+1)
扩展资料
频率的性质
当重复试验的次数n逐渐增大时,du频率fn(A)呈现出稳定性,逐渐稳定于某个常数,这个常数就是事件A的概率,这种“频率稳定性”也就是通常所说的统计规律性。
频率有如下性质:
(1)非负性:0小于等于fn(A)小于等于1;
(2)规范性:fn(Ω)=1 (注:Ω表示样本空间);
(3)可加性。
频数=总数×频率。频数又称次数,指变量值中代表某种特征的数出现的次数,按分组依次排列的频数构成频数数列,用来说明各组标志值对全体标志值所起作用的强度,各组频数的总和等于总体的全部单位数,频数的表示方法,既可以用表的形式,也可以用图形的形式。
频率,是指单位时间内完成周期性变化的次数,是描述周期运动频繁程度的量,常用符号f或ν表示,单位为秒分之一,符号为s。
为了纪念德国物理学家赫兹的贡献,人们把频率的单位命名为赫兹,简称"赫",符号为Hz。每个物体都有由它本身性质决定的与振幅无关的频率,叫做固有频率。频率概念不仅在力学、声学中应用,在电磁学、光学与无线电技术中也常使用。
使用分组数据的方差计算方法。
直方图上有每个组的均值和每个组的频数。假设某个组处于10-20,频数为5,那么这个组可以看成是5个15,依次类推,能获得一堆数据,算这堆数据的方差即可。
方差=(中点-平均数)×频率的和,其中频率=各长方形面积。
扩展资料:
直方图的纵轴坐标反映的是考察对象的频率与组距之比,只有当组距相同时,才可以用长方形的高即纵坐标的数值(即标值)表示频率(频数)的大小。
纵轴坐标名称采用频数(落在不同小组中的数据数量称为该组的频数)或频率(频数与样本总数的比称为该考察对象的频率)来表示。各分组的频数之和等于这组数据的样本总数。
如果是频率分布直方图,纵轴坐标标目采用“频率/%”,如果是频数分布直方图,则采用“频数”。
纵轴坐标标目是“频率/%”,那么∑fi=100。如果是“频数”,那么各统计对象的频数之和(∑ni=n)必须等于样本数据总数n。通过这种方法来初步判定作者给出的是频率还是频数分布直方图。
频率的计算公式为:f=1/T
其含义是物质在1s内完成周期性变化的次数,称为频率,常用字母f表示,其物理学单位是Hz
频率,是单位时间内完成周期性变化的次数,是描述周期运动频繁程度的量,常用符号f或ν表示,单位为秒分之一,符号为s-1。为了纪念德国物理学家赫兹的贡献,人们把频率的单位命名为赫兹,简称“赫”,符号为Hz。每个物体都有由它本身性质决定的与振幅无关的频率,叫做固有频率。频率概念不仅在力学、声学中应用,在电磁学、光学与无线电技术中也常使用。
物理学上的频率:
物质在1秒内完成周期性变化的次数叫做频率,常用f表示。
物理中频率的单位是赫兹(Hz),简称赫,也常用千赫(kHz)或兆赫(MHz)或GHz做单位。1kHz=1000Hz,1MHz=1000000Hz 1GHz=1000MHz。频率f是周期T的倒数,即f =1/T。
而像中国使用的电是一种正弦交流电,其频率是50Hz,也就是它一秒钟内做了50次周期性变化。
另外,我们听到的声音也是一种有一定频率的波。人耳听觉的频率范围约为20-20000HZ,超出这个范围的就不为我们人耳所察觉。
数学中的频率:
在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数nA称为事件A发生的频数。比值nA/n称为事件A发生的频率,并记为fn(A)。
⒈当重复试验的次数n逐渐增大时,频率fn(A)呈现出稳定性,逐渐稳定于某个常数,这个常数就是事件A的概率这种“频率稳定性”也就是通常所说的统计规律性。
⒉频率不等同于概率。由伯努利大数定理,当n趋向于无穷大的时候,频率fn(A)在一定意义下接近于概率P(A)。
数学中的频率计算:
分类:频率又可以分为很多种类,如工频、声频、潮汐频率、角频率、转角频率、统计频率
多普勒效应:
与频率相关的我们常常会想到“多普勒效应”
举一个例子来说明,当一辆救护车迎面驶来的时候,听到声音越来越高;而车离去的时候声音越来越低。你可能没有意识到,这个现象和医院使用的彩超同属于一个原理,那就是“多普勒效应”。
多普勒效应Doppler effect是纪念奥地利物理学家及数学家克里斯琴·约翰·多普勒(Christian Johann Doppler)而命名的,他于1842年首先提出了这一理论。主要内容为物体辐射的波长因为波源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高(蓝移blue shift);在运动的波源后面时,会产生相反的效应。波长变得较长,频率变得较低(红移red shift);波源的速度越高,所产生的效应越大。根据波红(蓝)移的程度,可以计算出波源循着观测方向运动的速度。
资料来源:
网页链接
网页链接
频数:落在各小组内数据的个数频率=每个小组的频数/数据总数但频率与平均数没关系有关系的是方差n个数据 x1,x2,x3,xn 的方差为:S2=[(x1-x’ )2+(x2-x’ )2+ (x3-x’ )2+ (x4-x’ )2+……+ (xn-x’)2]其中x’是n个数的平均数欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)