实践·pytorch梯度计算

实践·pytorch梯度计算,第1张

pytorch梯度机制,计算梯度注意事项

pytorch,autograd,tensor,自动微分,张量,梯度

  在一些优化算法中,常常需要计算函数的梯度,在pytorch可以借助autograd机制来自动计算梯度值。

  假设 ,关于 的梯度记为 , 是关于变量 的函数,其梯度 是随着 的值变化而变化的,决定梯度的除了 自身的值以外还有施加在 上的运算。因此,关注梯度就是关注两个东西,求哪个 变量 的梯度,该变量上被施加了哪种 运算

  首先看 变量 :在pytorch中把梯度作为一个固有属性结合进张量(tensor),任何一个tensor类型的变量都有梯度(grad)属性,再结合一般场景下的需要,pytorch把 tensor 类型定义为一个对象,包括5个属性,分别对应 data (变量本身的值), grad (梯度值), requires_grad (是否需要梯度,很多场景都不需要求变量的微分), grad_fn (生成该变量结果的运算,即这个值通过什么运算来的), is_leaf (是否叶子节点,叶子才帮你算梯度)。

  接着看 运算 :在pytorch中没有显式的给出梯度函数表达,而是算出梯度值,存放在tensor类型变量的grad属性中,那么运算也一样用结果来表达,假设 ,这里的 就承载了运算的结果,因此需要求 的梯度值时就对 使用 backward() 方法来计算 的梯度。

  上面提到计算梯度的两个要素: 变量 运算 ,对应的pytorch机制是 tensor 对象和 backward 方法。因此计算梯度就是学会怎么用这俩货。具体的例子这边不写,各位大神写的很多了,不当搬运工了,推荐 参考资料3 , 参考资料2 。这里说明两点,然后总结个过程。

  (1)可求梯度的条件

  从上面的叙述知道,一个变量有5个属性,要求这个变量可以求梯度,需要满足2个属性为真,requires_grad=True,is_leaf=True。在声明变量的时候声明requires_grad=True就可以了。在实践过程中如果发现梯度没法计算,要查一下这两个属性。

  (2)回传结果类型

  大部分情况是对标量求梯度,也是在 中, 是标量的情况,如果 向量或矩阵,也可以求梯度,此时本质上也是按分量一个一个来,因此要给backward()加个参数,一般情况下该参数的形状和 一样,每一个位置的值指示每个分量的梯度权重,多数情况就是全部设置为1。

  (3)一般过程

  仍然假设求 的关于 的梯度,首先设置声明tensor类型变量 ,声明的时候需要设置参数requires_grad=True;接下来计算出 ,这里的 是用来表示函数运算过程,最后使用 ,如果 非标量,就加个参数,假设为 , 的形状与 相同,此时使用的是 ,要的梯度值可以通过 获得。

  单独写个注意事项,计算变量 的梯度时, 的属性有可能会变化,比如需要对 进行迭代,假设为 ,那么 的requires_grad和is_leaf属性会变化,变得不可求梯度,那怎么办呢,其实程序迭代时只需要改变值就好了,使用 就可以了。

[1] >

速度梯度,指流体在两界面之间流动时,由于材料之间摩擦力的存在,使流体内部与流体和界面接触处的流动速度发生差别,产生一个渐变的速度场,称为速度梯度,或称切速率、剪切速率。

速度梯度公式:

式中速度梯度L是二阶张量;表示把相对变形梯度Ft(τ)对τ进行一次微分并令τ=t;Δ是梯度算符;v是速度。把速度梯度进行加法分解,则L=D+W,  式中D和W为L的对称部分和反称部分,它们分别称为变形速率张量和转动速率张量。

扩展资料:

流体在两界面之间流动时,不仅仅是速度梯度的单变量,更主要的是牛顿流体。

牛顿流体:是指在任意小的外力作用下即能流动的流体,并且流动的速度梯度(D)与所加的切应力(τ)的大小成正比,这种流体就叫做牛顿流体。

牛顿流体的流变方程是:τ=ηD 式中:τ--所加的切应力; D--流动速度梯度; η--不依赖于切变速度的常数,叫做黏性系数,简称为黏度。

凡不同于牛顿流体的都称为非牛顿流体。

参考资料来源:百度百科-速度梯度

根据公式f(y)=∫Rf(x,y)dx。二维正态分布的密度函数梯度的计算是可以根据公式f(y)=∫Rf(x,y)dx来计算的。二维正态分布,又名二维高斯分布,是一个在数学、物理及工程等领域都非常重要的概率分布。

grad梯度算法如下图所示:

梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。

扩展资料

在向量微积分中,标量场的梯度是一个向量场。标量场中某一点上的梯度指向标量场增长最快的方向,梯度的长度是这个最大的变化率。

在单变量的实值函数的情况,梯度只是导数,或者,对于一个线性函数,也就是线的斜率。

梯度一词有时用于斜度,也就是一个曲面沿着给定方向的倾斜程度。可以通过取向量梯度和所研究的方向的点积来得到斜度。

梯度的数值有时也被称为梯度。

参考资料来源:百度百科-梯度

举个例子
syms x y z
f=x^2+xy+z;
gradient=jacobian(f,[x,y,z])%求梯度
%gradient =
%[ 2x + y, x, 1]
x=-1;y=2;z=3;
tiduzhi=eval(gradient) %求在(-1,2,3)的梯度值
%
%tiduzhi =
%
% 0 -1 1
对于补充的问题,那就没什么函数,你直接用diff求微分算了
gradient=[diff(f,x),diff(f,y),diff(f,z)]

1、当函数 z=f(x,y) 在 (x0,y0)的两个偏导数 f'x(x0,y0) 与 f'y(x0,y0)都存在时,称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。

此时,对应于域 D 的每一点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。

方向导数和梯度计算方法如下图:

扩展资料:


偏导数 f'x(x0,y0) 表示固定面上一点对 x 轴的切线斜率;偏导数 f'y(x0,y0) 表示固定面上一点对 y 轴的切线斜率。

高阶偏导数:如果二元函数 z=f(x,y) 的偏导数 f'x(x,y) 与 f'y(x,y) 仍然可导,那么这两个偏导函数的偏导数称为 z=f(x,y) 的二阶偏导数。二元函数的二阶偏导数有四个:f"xx,f"xy,f"yx,f"yy。

f"xy与f"yx的区别在于:前者是先对 x 求偏导,然后将所得的偏导函数再对 y 求偏导;后者是先对 y 求偏导再对 x 求偏导。当 f"xy 与 f"yx 都连续时,求导的结果与先后次序无关。


欢迎分享,转载请注明来源:内存溢出

原文地址:https://54852.com/yw/12808507.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2025-08-27
下一篇2025-08-27

发表评论

登录后才能评论

评论列表(0条)

    保存