
图象没有断开,函数就是连续的!
你看这个函数的定义域是整个实
数集,又只有一个表达式(不是分
段函数),那这个函数肯定是连续
的!这是非常明显的,今后解题
若需连续的要求,你直接指出即
可,不必要做过多的说明。首先按定义,函数在某点连续,当且仅当该函数在该点左右极限都存在且相等,且在该点的函数值等于极限值
其次,可以用柯西收敛准则来判断,函数f(x)在x0连续等价于:
对任意的η>0,存在δ>0,使得当x1,x2都落在x0的δ邻域内时|f(x1)-f(x2)|判断连续用定义法,函数f(x)在点x0是连续的,是指
lim(x→x0)f(x)=f(x0)
函数在某个区间连续是指
任意x0属于某个区间都有以上的式子成立
还有一条重要结论:初等函数在其有意义的定义域内都是连续的
从图像上看,可导函数是一条光滑曲线,即没有出现尖点,如y=x绝对值在x=0处是尖点,故不可导而且因为可导必连续,所以不连续点(间断点)一定不可导
从定义上,f'(x0)=lim△x→0 [f(x0+△x)-f(x0)]/△x
我们必须求出函数f(x) 在x=x0处可导的充分必要条件是x=x0处的左右导数都存在且相等,即f'(x0-0)=f'(x0+0)
请采纳
函数连续性的定义:设函数f(x)在点x0的某个邻域内有定义,
若lim(x→x0)f(x)=f(x0),则称f(x)在点x0处连续。
若函数f(x)在区间I的每一点都连续,则称f(x)在区间I上连续。
判定函数连续求导就可以,如果可导就肯定连续。
函数的定义:给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。我们把这个关系式就叫函数关系式,简称函数。
函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
函数(function),最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。
函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
函数在点X处的极限等于该点的函数值,那么函数在该点就是连续的。如果X是定义域内任意点,那函数就是连续的。判定函数连续求导就可以,如果可导就肯定连续。
最好是那具体的题目理解一下。
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)