
导语:数学术语亦包括如同胚及可积性等专有名词.但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性.数学家将此对语言及逻辑精确性的要求称为“严谨”。下面就由我为大家带来大学数学解题方法及步骤,大家一起去看看怎么做吧!
一、配方法
配方法是对数学式子进行一种定向变形(配成"完全平方")的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用"裂项"与"添项"、"配"与"凑"的技巧,从而完成配方。有时也将其称为"凑配法"。
最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。
二、换元法
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。
它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
三、待定系数法
要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)g(x)的充要条件是:对于一个任意的a值,都有f(a)g(a)或者两个多项式各同类项的系数对应相等。
待定系数法解题的关键是依据已知,正确列出等式或方程。使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。
使用待定系数法,它解题的基本步骤是:
第一步,确定所求问题含有待定系数的解析式
第二步,根据恒等的条件,列出一组含待定系数的方程
第三步,解方程组或者消去待定系数,从而使问题得到解决。
如何列出一组含待定系数的方程,主要从以下几方面着手分析:
①利用对应系数相等列方程
②由恒等的概念用数值代入法列方程
③利用定义本身的属性列方程
④利用几何条件列方程。
比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数再把几何条件转化为含所求方程未知系数的方程或方程组最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程。
四、定义法
所谓定义法,就是直接用数学定义解题。数学中的定理、公式、性质和法则等,都是由定义和公理推演出来。定义是揭示概念内涵的逻辑方法,它通过指出概念所反映的事物的本质属性来明确概念。
定义是千百次实践后的必然结果,它科学地反映和揭示了客观世界的事物的本质特点。简单地说,定义是基本概念对数学实体的高度抽象。用定义法解题,是最直接的方法,本讲让我们回到定义中去。
五、数学归纳法
归纳是一种有特殊事例导出一般原理的思维方法。归纳推理分完全归纳推理与不完全归纳推理两种。不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。
数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n)时成立,这是递推的基础第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。这两个步骤密切相关,缺一不可,完成了这两步,就可以断定"对任何自然数(或n≥n且n∈N)结论都正确"。由这两步可以看出,数学归纳法是由递推实现归纳的,属于完全归纳。
运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。
运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。
六、参数法
参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题。直线与二次曲线的参数方程都是用参数法解题的例证。换元法也是引入参数的典型例子。
辨证唯物论肯定了事物之间的联系是无穷的,联系的方式是丰富多采的,科学的任务就是要揭示事物之间的内在联系,从而发现事物的`变化规律。参数的作用就是刻画事物的变化状态,揭示变化因素之间的内在联系。参数体现了近代数学中运动与变化的思想,其观点已经渗透到中学数学的各个分支。运用参数法解题已经比较普遍。
参数法解题的关键是恰到好处地引进参数,沟通已知和未知之间的内在联系,利用参数提供的信息,顺利地解答问题。
七、反证法
与前面所讲的方法不同,反证法是属于"间接证明法"一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。法国数学家阿达玛(Hadamard)对反证法的实质作过概括:"若肯定定理的假设而否定其结论,就会导致矛盾"。具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。
反证法所依据的是逻辑思维规律中的"矛盾律"和"排中律"。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的"矛盾律"两个互相矛盾的判断不能同时都假,简单地说"A或者非A",这就是逻辑思维中的"排中律"。反证法在其证明过程中,得到矛盾的判断,根据"矛盾律",这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以"否定的结论"必为假。再根据"排中律",结论与"否定的结论"这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。
反证法的证题模式可以简要的概括我为"否定→推理→否定"。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是"否定之否定"。应用反证法证明的主要三步是:否定结论→推导出矛盾→结论成立。实施的具体步骤是:
第一步,反设:作出与求证结论相反的假设
第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾
第三步,结论:说明反设不成立,从而肯定原命题成立。
在应用反证法证题时,一定要用到"反设"进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫"归谬法"如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫"穷举法"。
在数学解题中经常使用反证法,牛顿曾经说过:"反证法是数学家最精当的武器之一"。一般来讲,反证法常用来证明的题型有:命题的结论以"否定形式"、"至少"或"至多"、"唯一"、"无限"形式出现的命题或者否定结论更明显。具体、简单的命题或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆。
有些学生天天趴在那里做题,但解出的题量却不多,花了大量的时间,却没有解出大量的习题,难道不应找一找原因吗?下面一起跟着我来看看初中数学解题步骤的学习方法吧!
解题步骤与方法
对基本的解题步骤和解题方法也要熟悉。解题的过程,是一个思维的过程。对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的答案。否则,走了弯路就多花了时间。
建议大家:按照前人总结出的一些基本的解题思路和常用的解题程序答题。
初中数学解题方法之常用的公式
下面是对数学常用的公式的讲解,同学们认真学习哦。
对于常用的公式
如数学中的乘法公式、三角函数公式,常用的数字,如11~25的平方,特殊角的三角函数值,化学中常用元素的化学性质、化合价以及化学反应方程式等等,都要熟记在心,需用时信手拈来,则对提高演算速度极为有利。
总之,学习是一个不断深化的认识过程,解题只是学习的一个重要环节。你对学习的内容越熟悉,对基本解题思路和方法越熟悉,背熟的数字、公式越多,并能把局部与整体有机地结合为一体,形成了跳跃性思维,就可以大大加快解题速度。
初中数学解题方法之学会画 图
数学的解题中对于学会画图是有必要的,希望同学们很好的学会画图。
学会画图
画图是一个翻译的过程。读题时,若能根据题义,把对数学(或其他学科)语言的理解,画成分析图,就使题目变得形象、直观。这样就把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。所以,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。
画图时应注意尽量画得准确。画图准确,有时能使你一眼就看出答案,再进一步去演算证实就可以了;反之,作图不准确,有时会将你引入歧途。
初中数学解题方法之审题
对于一道具体的习题,解题时最重要的环节是审题。
审题
认真、仔细地审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。读题一旦结束,哪些是已知条件?求解的结论是什么?还缺少哪些条件,可否从已知条件中推出?在你的脑海里,这些信息就应该已经结成了一张网,并有了初步的思路和解题方案,然后就是根据自己的思路,演算一遍,加以验证。有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。很多时候学生来问问题,我和他一起读题,读到一半时,他说:“老师,我会了。”
所以,在实际解题时,应特别注意,审题要认真、仔细。
初中数学解题方法之增加习题的难度
人们认识事物的过程都是从简单到复杂,一步一步由表及里地深入下去。
增加习题的难度
应先易后难,逐步增加习题的难度。一个人的能力也是通过锻炼逐步增长起来的。若简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。养成了习惯,遇到一般的难题,同样可以保持较高的解题速度。而我们有些学生不太重视这些基本的、简单的习题,认为没有必要花费时间去解这些简单的习题,结果是概念不清,公式、定理及解题步骤不熟,遇到稍难一些的题,就束手无策,解题速度就更不用说了。
其实,解简单容易的习题,并不一定比解一道复杂难题的劳动强度和效率低。比如,与一个人扛一大袋大米上五层楼相比,一个人拎一个小提包也上到五层楼当然要轻松得多。但是,如果扛米的人只上一次,而拎包的人要来回上下50次、甚至100次,那么,拎包人比扛米人的'劳动强度大。所以在相同时间内,解50道、100道简单题,可能要比解一道难题的劳动强度大。再如,若这袋大米的重量为100千克,由于太重,超出了扛米人的能力,以至于扛米人费了九牛二虎之力,却没能扛到五楼,虽然劳动强度很大,却是劳而无功。而拎包人一次只拎10千克,15次就可以把150千克的大米拎到五楼,劳动强度也许并不很大,而效率之高却是不言而喻的。由此可见,去解一道难以解出的难题,不如去解30道稍微简单一些的习题,其收获也许会更大。
因此,我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。
初中数学解题方法之归纳总结
下面是对数学解题归纳总结的讲解,希望给同学们的学习很好的帮助。
要学会归纳总结。
在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。
以上对数学归纳总结知识的内容讲解,希望同学们都能很好的掌握,相信同学们会学习的很好。
高考数学难度比例为7:2:1,也就是说80%都是基础题。然而数学却是高考中最拉分的。90%的学生都缺少一套科学,高效的解题 方法 和步骤,尤其到了冲刺阶段!那么接下来给大家分享一些关于高考数学选择题解题步骤,希望对大家有所帮助。
高考数学选择题解题步骤
1.突破运算
运算是考场解题的奠基石,运算能力不过关,解题基本无法进行到最后,据估计高三学生绝大多数同学都或多或少有运算困扰,但是却苦于无从提高,因为这被公认为是“基础”没有人也没有资料专门讲解,如果有也是把很多题目放在一块,这是造成很多学生运算一直无法提高的主要原因.
2.突破概念公式图形
这一块内容在课本或者资料上都有详细归纳,但高一高二解题一般公式书归纳的内容基本可以,但是进入高三,随着题目的复杂化,你会发现,课本或者公式书上的内容还远远不够,我就举一些高一课本中的简单例子,如函数的奇偶性周期性等考试中会涉及很多结论,而这些可能在书上或一般公式书都没有,怎么办?这就需要你自己 总结 ,又如函数的零点定理,它只是充分条件而不是必要条件,那么需要添加什么才能变成充要条件呢,再比如空间几何经常会考一些内外接球,可能你会计算,但是在考场上如果你没有归纳出内外接球半径计算公式,那么最终你可能由于时间关系外加紧张,可能会出现错误。
同时考试中涉及的图形可能并不完全是课本中熟知的,而是课本中基本图形的扩展图形,什么是扩展图形呢,我举一个简单例子,如直线大家都会画,那么对x或y添加绝对值,或者对x,y同时加绝对值它的图形你还会画吗?又如反比例函数y=1/x,扩展图形y=2x+1/x ,y=-2x+1/x, y=(-2x+1)/(x+3)等你知道吗?
3.突破选择
选择题在考试中占据半壁江山,选择题的解题的解答直接会影响到整个试卷的做题规划,那么如何在较短的时间内提高选择题的解题效率是我们无法回避的现实问题。那么选择题到底该如何突破呢?
突破选择题主要包括:选项特征,选择题快速计算技巧,选择题题目特征及解法,以及一些常见选择题的特殊结论等
4.突破-解答题
解答题是考试中我们遇到的另外一种题型,但是它的解法不同于选择题,由于高考中解答题的特殊性,使我们可以通过一些策略可以取得令人满意的分数。
一般高考考场中的解答题题型基本是固定的,所以我们可以通过归纳出的一些结论,特殊公式,一般解题思路及模板等再结合四步解题思路完成解答题的快速求解。
高考数学选择题秒杀方法与技巧
一:直选法——简单直观
这种方法一般适用于基本不需要“转变”或推理的简单题目.这些题目主要考查考生对物理识记内容的记忆和理解程度,属常识性知识题目.常见考纲中的Ⅰ级要求内容。
二:比较排除法——排除异己
这种方法要在读懂题意的基础上,根据题目的要求,先将明显的错误或不合理的备选答案一个一个地排除掉,最后只剩下正确的答案。如果选项是完全肯定或否定的判断,可通过举反例的方式排除如果选项中有相互矛盾或者是相互排斥的选项,则两个选项中可能有一种说法是正确的,当然,也可能两者都错,但绝不可能两者都正确。
三:特殊值法、极值法——投机取巧
对较难直接判断选项的正误量,可以让某些物理量巧取满足题设条件的特殊值或极值,带入到各选项中逐个进行检验,凡是用特殊值或极值检验证明是不正确的选项,就一定是错误的,可以排除。这种方法往往可以省去严密的逻辑推理或繁杂的数学证明。
四:极限思维法——无所不极
物理中体现的极限思维常见方法有极端思维法、微元法。当题目所涉及的物理量随条件单调变化时,可用极限法是把某个物理量推向极端,即极大或极小,极左或极右,并据此做出科学的推理分析,从而给出判断或导出一般结论。
微元法是把物理过程或研究对象分解为众多细小的
“微元”,只需对这些“微元”进行必要的数学方法或物理思想处理,便可使问题得于求解。
五:代入法——事半功倍
对于一些计算型的选择题,可以将题目选项中给出的答案直接代入进行检验,或在计算程中某阶段代入检验,常可以有效地减少数学运算量。
六:对比归谬法——去伪存真
对于一些选项间有相互关联的高考选择题,有时可能会出现如果选项A正确即会有选项B正确或选项C也正确的情况,对于答案应为单选或双选的选择题可用此方法进行排除错误选项。
七:整体、隔离法——双管齐下
研究对象为多个时,首先要想到利用整体、隔离法去求解。常用思路是整体求外力,隔离求内力,先整体后隔离,两种方法配合使用。
八:对称分析法——左右开弓
对于有对称性的物理问题,我们可以充分利用其特点,快速简便地求解问题
九:图像图解法——立竿见影
根据题目的内容画出图像或示意图,如物体的运动图像、受力示意图、光路图等,再利用图像分析寻找答案,利用图像或示意图解答时,具有形象、直观的特点,便于了解各物理量之间的关系,能够避免繁琐的计算,迅速简便地找出正确的答案。
十: 逆向思维 法——另辟蹊径
很多物理过程具有可逆性,如运动的可逆性,光路的可逆性等,在沿着正向“由因到果”去分析受阻时,可“反其道而行之”,沿着逆向“由果到因”的过程去思考,常常收到化难为易、出奇制胜的效果。
十一:举例求证法——避实就虚
有些选择题中带有“可能”、“可以”等不确定的词语,只要能举出一个特殊例子证明它正确,就可以肯定这个选择项是正确的有些选择题的选项中带有“一定”“不可能”等肯定的词语,只要能举出一个反例驳倒这个选项,就可以排除这个选项。
十二:转换对象法——反客为主
在一些问题中,如以题目中给出的物体作为研究对象去分析问题,有可能十分复杂或无法解答,这时可以变换研究对象,转换为我们熟悉的问题,使分析问题变得简单易行,最后再去找出待求量。
十三:二级结论法——迅速准确
“二级结论”是指由基本规律和基本公式导出的结论,熟记并巧用.一些“二级结论”可以使思维简化,节约解题时间,其能常常使我们 “看到题就知道答案”,达到迅速准确的目的。
十四:比例分析法——化繁为简
两个物理量的数学关系明确时,利用他们的比例规律可以使数学计算简化,应用此方法必须明确研究的物理问题中涉及的物理量是什么关系,明确哪些相同量,哪些是不同量。
十五:控制变量法——以寡敌众
对多变量问题,有时采用每一次只改变其中一个变量而控制其余几个量不变的方法,使其变成较简单的单变量问题,大大降低问题的分析复杂程度,这种方法是科学探究中和重要思想方法,也是物理中常用的探索问题和分析问题的科学方法之一。
十六:量纲分析法——纲举目张
对于以字母形式出现的计算型选择题,物理公式表达了物理量间的数量和单位的双重关系,所以可以用物理量的单位来衡量和检验该物理量的运算结果是否正确。常用此方法来判断计算结果的正确性,选择题中常用其来排除一些错误选项。
十七:等效替换法——殊途同归
也可称等效处理法,类比分析法。是把较陌生、复杂的物理现象、物理过程在保证某种效果、特性或关系相同的前提下,转化为简单、熟悉的物理现象或物理过程来研究,从而认识清楚研究对象本质和规律的一种思想方法。常用的如等效重力场、类平抛运动、等效电源、力或运动的合成与分解的等效性、万有引力与库仑力的类比性等。
十八:临界分析法——以点带面
求解物理量的范围问题可以采用临界分析法,充分利用临界条件进行快速求解,常见的临界条件如:物体“刚好脱离”:接触但d力为零件物体“刚要相对滑动”:受到最大静摩擦力粒子“刚要飞出磁场”:轨迹与磁场相切,等等。
十九:建立模型法——即物明理
物理模型是一种理想化的物理形态,是物理知识的一种直观表现,模型思维法是利用类比、抽象、简化、理想化等手段,突出物理过程的主要因素,忽略次要因素,把研究对象的物理本质特征抽象出来,从而进行分析和推理的一种思维方法.在遇到以新颖的背景、陌生的材料和前沿的知识为命题素材,联系工农业生产、高科技或相关物理理论的题目时,如何能根据题意从题干中抽象出我们所熟悉的物理模型是解题的关键.
二十:计算推理法——有理有据
根据题给条件,利用有关的物理规律、物理公式或物理原理通过逻辑推理或计算得出正确答案,然后再与备选答案对照做出选择。
高考数学解题技巧
1.先易后难,逐步增加习题的难度
人们认识事物的过程都是从简单到复杂。简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。
我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。
2.保质保量拿下中下等题目
中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。
3.面—点—线
解决应用性问题,首先要全面调查题意,迅速接受概念,此为"面"透过冗长叙述,抓住重点词句,提出重点数据,此为"点"综合联系,提炼关系,依靠数学方法,建立数学模型,此为"线",如此将应用性问题转化为纯数学问题。当然,求解过程和结果都不能离开实际背景。
4.限时答题,先提速后纠正错误
很多同学做题慢的一个重要原因就是平时做作业习惯了拖延时间,导致形成了一个不太好的解题习惯。所以,提高解题速度就要先解决“拖延症”。比较有效的方式是限时答题,例如在做数学作业时,给自己限时,先不管正确率,首先保证在规定时间内完成数学作业,然后再去纠正错误。这个过程对提高书写速度和思考效率都有较好的作用。当你习惯了一个较快的思考和书写后,解题速度自然就会提高,及改正了拖延的毛病,也提高了成绩。
高考数学选择题解题步骤相关 文章 :
★ 高考数学选择题答题技巧汇总大全
★ 数学选择题八大解题方法
★ 2019高考数学选择题万能答题技巧及方法
★ 高考常用的选择题解题方法
★ 高考数学选择题答题技巧
★ 高考数学选择题答题技巧大全
★ 高考数学基础题型答题技巧及解题步骤
★ 2020高考数学选择题解题技巧
★ 高考数学题型归纳及选择题答题技巧
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)