
我在OpenCV android 2.4.11的例子下工作,它使用相机检测面部.
我没有在找到的脸上画一个矩形,而是试图在脸上放一个面具(png图像).
但是为了在脸上显示图像,png图像带有透明度的黑色背景.
FdActivity.java
public voID onCameraviewStarted(int wIDth, int height) { mGray = new Mat(); mRgba = new Mat(); //Load my mask png Bitmap image = BitmapFactory.decodeResource(getResources(), R.drawable.mask_1); mask = new Mat(); Utils.bitmapToMat(image, mask);}public Mat onCameraFrame(CvCameraviewFrame inputFrame) { mRgba = inputFrame.rgba(); mGray = inputFrame.gray(); if (mabsoluteFaceSize == 0) { int height = mGray.rows(); if (Math.round(height * mrelativeFaceSize) > 0) { mabsoluteFaceSize = Math.round(height * mrelativeFaceSize); } mNativeDetector.setMinFaceSize(mabsoluteFaceSize); } MatOfRect faces = new MatOfRect(); if (mDetectorType == JAVA_DETECTOR) { if (mJavaDetector != null) mJavaDetector.detectMultiScale(mGray, faces, 1.1, 2, 2, new Size(mabsoluteFaceSize, mabsoluteFaceSize), new Size()); } else if (mDetectorType == NATIVE_DETECTOR) { if (mNativeDetector != null) mNativeDetector.detect(mGray, faces); } else { Log.e(TAG, "Detection method is not selected!"); } Rect[] facesArray = faces.toArray(); for (int i = 0; i < facesArray.length; i++) { overlayImage(mRgba, mask, facesArray[i]); } return mRgba; } public Mat overlayImage(Mat background, Mat foregroundMask, Rect faceRect) { Mat mask = new Mat(); imgproc.resize(this.mask, mask, faceRect.size()); Mat source = new Mat(); imgproc.resize(foregroundMask, source, background.size()); mask.copyTo( background.submat( new Rect((int) faceRect.tl().x, (int) faceRect.tl().y, mask.cols(), mask.rows())) ); source.release(); mask.release(); return background; }解决方法:
注意:我将解释一般原理并在Python中给出一个示例实现,因为我没有设置AndroID开发环境.将它移植到Java应该相当简单.您可以将代码作为单独的答案发布.
您需要执行与adDWeighted *** 作类似的 *** 作,即 *** 作
但是,在您的情况下,α需要是一个矩阵(即我们需要每个像素不同的混合系数).
样本图像
让我们使用一些示例图像来说明这一点.我们可以使用Lena图像作为样本面:
此图像作为透明覆盖:
这个图像作为没有透明度的叠加层:
混合矩阵
要获得Alpha矩阵,我们可以使用阈值处理确定前景(叠加)和背景(面部)遮罩,或者如果可用,则使用输入图像中的Alpha通道.
在值为0.0 .. 1.0的浮点图像上执行此 *** 作非常有用.然后我们可以将两个面具之间的关系表达为
foreground_mask = 1.0 - background_mask即加在一起的两个掩模导致所有掩模.
对于RGBA格式的叠加图像,我们得到以下前景和背景蒙版:
当我们在RGB格式的情况下使用阈值,侵蚀和模糊时,我们得到以下前景和背景蒙版:
加权和
现在我们可以计算两个加权部分:
foreground_part = overlay_image * foreground_maskbackground_part = face_image * background_mask对于RGBA覆盖,前景和背景部分如下所示:
对于RGB叠加,前景和背景部分看起来如下:
最后将它们组合在一起,并将图像转换回0-255范围内的8位整数.
*** 作结果如下(分别为RGBA和RGB叠加):
代码示例 – RGB叠加
import numpy as npimport cv2# ==============================================================================def blend_non_transparent(face_img, overlay_img): # Let's find a mask covering all the non-black (foreground) pixels # NB: We need to do this on grayscale version of the image gray_overlay = cv2.cvtcolor(overlay_img, cv2.color_BGR2GRAY) overlay_mask = cv2.threshold(gray_overlay, 1, 255, cv2.THRESH_BINARY)[1] # Let's shrink and blur it a little to make the Transitions smoother... overlay_mask = cv2.erode(overlay_mask, cv2.getStructuringElement(cv2.MORPH_ELliPSE, (3, 3))) overlay_mask = cv2.blur(overlay_mask, (3, 3)) # And the inverse mask, that covers all the black (background) pixels background_mask = 255 - overlay_mask # Turn the masks into three channel, so we can use them as weights overlay_mask = cv2.cvtcolor(overlay_mask, cv2.color_GRAY2BGR) background_mask = cv2.cvtcolor(background_mask, cv2.color_GRAY2BGR) # Create a masked out face image, and masked out overlay # We convert the images to floating point in range 0.0 - 1.0 face_part = (face_img * (1 / 255.0)) * (background_mask * (1 / 255.0)) overlay_part = (overlay_img * (1 / 255.0)) * (overlay_mask * (1 / 255.0)) # And finally just add them together, and rescale it back to an 8bit integer image return np.uint8(cv2.adDWeighted(face_part, 255.0, overlay_part, 255.0, 0.0))# ==============================================================================# We load the imagesface_img = cv2.imread("lena.png", -1)overlay_img = cv2.imread("overlay.png", -1)result_1 = blend_non_transparent(face_img, overlay_img)cv2.imwrite("merged.png", result_1)代码示例 – RGBA叠加
import numpy as npimport cv2# ==============================================================================def blend_transparent(face_img, overlay_t_img): # Split out the transparency mask from the colour info overlay_img = overlay_t_img[:,:,:3] # Grab the BRG planes overlay_mask = overlay_t_img[:,:,3:] # And the Alpha plane # Again calculate the inverse mask background_mask = 255 - overlay_mask # Turn the masks into three channel, so we can use them as weights overlay_mask = cv2.cvtcolor(overlay_mask, cv2.color_GRAY2BGR) background_mask = cv2.cvtcolor(background_mask, cv2.color_GRAY2BGR) # Create a masked out face image, and masked out overlay # We convert the images to floating point in range 0.0 - 1.0 face_part = (face_img * (1 / 255.0)) * (background_mask * (1 / 255.0)) overlay_part = (overlay_img * (1 / 255.0)) * (overlay_mask * (1 / 255.0)) # And finally just add them together, and rescale it back to an 8bit integer image return np.uint8(cv2.adDWeighted(face_part, 255.0, overlay_part, 255.0, 0.0))# ==============================================================================# We load the imagesface_img = cv2.imread("lena.png", -1)overlay_t_img = cv2.imread("overlay_transparent.png", -1) # Load with transparencyresult_2 = blend_transparent(face_img, overlay_t_img)cv2.imwrite("merged_transparent.png", result_2) 总结 以上是内存溢出为你收集整理的android – 如何实时地在帧中加入png与alpha /透明度全部内容,希望文章能够帮你解决android – 如何实时地在帧中加入png与alpha /透明度所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)