
专家系统的适用领域的特征包括:不需要额外常识、输入的数据可以客观描述、人类专家稀缺、用户需求量大。
专家系统是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,它能够应用人工智能技术和计算机技术,根据系统中的知识与经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题。
简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。
专家系统的组成
构造
专家系统通常由人机交互界面、知识库、推理机、解释器、综合数据库、知识获取等6个部分构成。其中尤以知识库与推理机相互分离而别具特色。专家系统的体系结构随专家系统的类型、功能和规模的不同,而有所差异。
为了使计算机能运用专家的领域知识,必须要采用一定的方式表示知识。目前常用的知识表示方式有产生式规则、语义网络、框架、状态空间、逻辑模式、脚本、过程、面向对象等。基于规则的产生式系统是目前实现知识运用最基本的方法。
产生式系统由综合数据库、知识库和推理机3个主要部分组成,综合数据库包含求解问题的世界范围内的事实和断言。知识库包含所有用“如果:〈前提〉,于是:〈结果〉”形式表达的知识规则。推理机(又称规则解释器)的任务是运用控制策略找到可以应用的规则。
知识库
知识库用来存放专家提供的知识。专家系统的问题求解过程是通过知识库中的知识来模拟专家的思维方式的,因此,知识库是专家系统质量是否优越的关键所在,即知识库中知识的质量和数量决定着专家系统的质量水平。
一般来说,专家系统中的知识库与专家系统程序是相互独立的,用户可以通过改变、完善知识库中的知识内容来提高专家系统的性能。
人工智能中的知识表示形式有产生式、框架、语义网络等,而在专家系统中运用得较为普遍的知识是产生式规则。产生式规则以IF…THEN…的形式出现。。
就像BASIC等编程语言里的条件语句一样,IF后面跟的是条件(前件),THEN后面的是结论(后件),条件与结论均可以通过逻辑运算AND、OR、NOT进行复合。在这里,产生式规则的理解非常简单:如果前提条件得到满足,就产生相应的动作或结论。
推理机
推理机针对当前问题的条件或已知信息,反复匹配知识库中的规则,获得新的结论,以得到问题求解结果。在这里,推理方式可以有正向和反向推理两种。
正向链的策略是寻找出前提可以同数据库中的事实或断言相匹配的那些规则,并运用冲突的消除策略,从这些都可满足的规则中挑选出一个执行,从而改变原来数据库的内容。
这样反复地进行寻找,直到数据库的事实与目标一致即找到解答,或者到没有规则可以与之匹配时才停止。
逆向链的策略是从选定的目标出发,寻找执行后果可以达到目标的规则;如果这条规则的前提与数据库中的事实相匹配,问题就得到解决;
否则把这条规则的前提作为新的子目标,并对新的子目标寻找可以运用的规则,执行逆向序列的前提,直到最后运用的规则的前提可以与数据库中的事实相匹配,或者直到没有规则再可以应用时,系统便以对话形式请求用户回答并输入必需的事实。
由此可见,推理机就如同专家解决问题的思维方式,知识库就是通过推理机来实现其价值的。
其他部分
人机界面是系统与用户进行交流时的界面。通过该界面,用户输入基本信息、回答系统提出的相关问题,并输出推理结果及相关的解释等。
综合数据库专门用于存储推理过程中所需的原始数据、中间结果和最终结论,往往是作为暂时的存储区。解释器能够根据用户的提问,对结论、求解过程做出说明,因而使专家系统更具有人情味。
知识获取是专家系统知识库是否优越的关键,也是专家系统设计的“瓶颈”问题,通过知识获取,可以扩充和修改知识库中的内容,也可以实现自动学习功能。
实现方式
早期的专家系统采用通用的程序设计语言(如fortran、pascal、basic等)和人工智能语言(如lisp、prolog、smalltalk等),通过人工智能专家与领域专家的合作,直接编程来实现的。其研制周期长,难度大,但灵活实用,至今尚为人工智能专家所使用。
大部分专家系统研制工作已采用专家系统开发环境或专家系统开发工具来实现,领域专家可以选用合适的工具开发自己的专家系统,大大缩短了专家系统的研制周期,从而为专家系统在各领域的广泛应用提供条件。
专家系统通常由人机交互界面、知识库、推理机、解释器、综合数据库、知识获取等6个部分构成。
专家系统又名ES(Expert System)。ES一路是逐步由基于规则、基于框架、基于案例、基于模型和基于网络的5个阶段发展而来。
基于规则的专家系统是目前最常用的方式,主要归功于大量成功的实例,以及简单灵活的开发工具。它直接模仿人类的心理过程,利用一系列规则来表示专家知识。
扩展资料:
专家系统的功能:
1、存储问题求解所需的知识。
2、存储具体问题求解的初始数据和推理过程中涉及的各种信息,如中间结果、目标、字母表以及假设等。
3、根据当前输入的数据,利用已有的知识,按照一定的推理策略,去解决当前问题,并能控制和协调整个系统。
4、能够对推理过程、结论或系统自身行为作出必要的解释,如解题步骤、处理策略、选择处理方法的理由、系统求解某种问题的能力、系统如何组织和管理其自身知识等。
5、提供知识获取,机器学习以及知识库的修改、扩充和完善等维护手段。只有这样才能更有效地提高系统的问题求解能力及准确性。
6、提供一种用户接口,既便于用户使用,又便于分析和理解用户的各种要求和请求。
参考资料来源:
百度百科-专家系统
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)