为什么现在大部分互联网公司使用的数据库是MySQL?

为什么现在大部分互联网公司使用的数据库是MySQL?,第1张

放在很久以前,MySQL是很少受待见的

,而现在MySQL越来越受到重视,包括银行在内的一些系统也会采用MySQL。

放在很久以前,MySQL是很少受待见的

为什么国内绝大多数互联网公司使用的数据库都是MySQL呢?主要原因可以归结为以下这几类:

1、LNMP架构模式的推动

Linux+Nginx+MySQL+PHP这种架构选型在中小型互联网公司使用是最多的,也是最主流的。像淘宝早期也是这种技术选型。因为PHP+MySQL是“黄金搭档”,加上PHP开源框架太多,市场占有率很高,所以也催生了MySQL的发展。

2、大型公司去IOE化的推动:

在以前,一般的不差钱的大型企业在信息化这块的选型较多的就是IOE(IBM小型机AIX系统+Oracle数据库+EMC存储),因为IOE能支撑庞大的业务、很稳定、说出去也是高大尚的。

但是IOE不是一般中小型企业能承担的,IOE的投入巨大。所以在前几年国内不少大型互联网企业称要去IOE化,2013年5月阿里巴巴最后一台IBM小型机下线,2013年07月淘宝广告系统使用的Oracle数据库下线,都是阿里巴巴在去IOE化路上的重要里程碑。

为什么要去IOE呢?IOE的架构模式都是利用小型机和高端存储设备来提供高性能的处理与存储服务,这种架构是集中式的架构(比如将所有的数据集中在一个数据库中),当性能不足时,就通过增加硬件(CPU/内存/磁盘)的方式来提高处理能力,而这种集中式架构不适应当下的大数据需求了。

去IOE的重要实施方案中有一点就是将集中式的Oracle换为分布式的MySQL集群,MySQL可以通过水平扩展来解决性能问题

去IOE的重要实施方案中有一点就是将集中式的Oracle换为分布式的MySQL集群,MySQL可以通过水平扩展来解决性能问题

3、开源免费

较Oracle、SQL

Server而言,MySQL是开源免费的

(虽然MySQL被Oracle了),不像Oracle和SQL

Server是需要商业付费的,而且价格昂贵。

较Oracle、SQL

Server而言,MySQL是开源免费的

以上就是我的观点,对于这个问题大家是怎么看待的呢?欢迎在下方评论区交流

~

我是科技领域创作者,欢迎关注我了解更多科技知识!

1.数据量太大,比如上亿,就用oracle,优点上亿数据对Oracle来说轻飘飘的,也不用太多优化配置,缺点安装比较麻烦,上手比较慢。

2.数据量较大,比如千万级,用postgresql,它号称对标Oracle,处理千万级数据还是可以的,也是易学易用。

3.数据量一般,比如百万级,用mysql,这个级别的数据量mysql处理还是比较快的。

4.数据量较小,比如十万以下,sqlite、access都可以。

上面是基于单表 *** 作的数据量,你看着选。

简单易用的数据库哪个比较好?这个要具体看你的用途,如果数据量比较少(10万左右),追求简约简单,免费开源的sqlite就行,如果数据量比较多,考虑到高并发、分布式,可以使用专业的mysql、postgresql,下面我分别简单介绍一下,感兴趣的朋友可以尝试一下:

小巧灵活sqlite

这是基于c语言开发的一个轻量级关系型数据库,短小精悍、免费开源,个人使用无需繁琐的配置,只需一个简单的运行库便可直接使用,针对各种编程语言都提供了丰富的API接口, java、 python、c#等都可轻松 *** 作,如果你存储数据量不多,只是本地简单的 *** 作(读多写少),可以使用一下这个数据库,占用内存非常少,轻便灵活,当然,在高并发、数据量大的情况下就不合适了:

专业强大mysql

这是目前应该广泛使用的一个关系型数据库,免费开源跨平台,在信息系统开发方面一直占据着主力位置,如果你从事于web开发或者网站后台建设,那么这个数据库一定非常熟悉,支持高并发、分布式,存储数据量相对于sqlite来说,更多也更安全,索引、触发器、存储过程等功能非常不错,支持数据导入导出、恢复备份,只要你熟悉一下基本使用过程,很快就能掌握和运用:

免费开源postgresql

这是加州大学计算机系开发的一个对象-关系型数据库(自由软件),免费、开源、跨平台,支持流计算、全文检索、图式搜索、并行计算、存储过程、空间数据、K-V类型,相比较mysql来说,在复杂查询、高并发下更稳定、性能更优越,可扩展性、可维护性非常不错,但也有劣势,例如新旧版本不分离存储,没有Coverage index scan等,总体使用效果来说还不错:

当然,除了以上3个数据库,还有许多其他数据库,像mssql、oracle等也都非常不错,对于存储和处理数据来说绰绰有余,只要你熟悉一下基本使用过程,很快就能入门的,网上也有相关教程和资料,介绍的非常详细,感兴趣的话,可以搜一下,希望以上分享的内容能对你有所帮助吧,也欢迎大家评论、留言进行补充。

最符合初学者理解和入门的是Access,因为它和Excel本来就是一个套件,相互转化容易,复制粘贴即可,非常好理解库、表、字段、键的概念。

如果数据量不大,强烈推荐试试Filemaker,脚本化编程,自由定制输入界面、工作流程,非常便捷高效。

最近杀出来的airtable,更是简单高效,界面美观, *** 作与电子表格相当,发展势头也非常迅猛。

二者侧重点有所不同,用户可根据需要选择

作为一个软件开发人员,长期需要和数据库打交道,个人更加青睐于MySQL。虽然可能基于你的Excel原因,有些人会建议你使用Access数据库,但是基于我个人的 意见,我并不建议你那样做。采用MySql的具体理由如下:

1.MySQL具有普遍性,在国内的环境中,绝大多数的互联网企业采用的是MySQL。有了广大的用户基础后,针对于各种问题网上也能更好地找到解决方案。

2.MySQL相对于Oracle而言,更加轻量化,针对于从Excel量级的数据,没必要使用Oracle。同时MySQL是完全免费的,不用担心版权及费用问题,无论对个人还是对预算有限的企业而言都是很好的选择。

3.MySQL高度兼容标准SQL,这对于以后迁移到其他数据库而言,也能很大程度地降低学习成本。

希望我的回答能够对你有所帮助!!![耶][耶][耶]

Excel办公确实便利,可以做一些简单的数据分析,但涉及大量复杂的数据运算,就会遇到和题主一样的问题,运算速度慢,如果主机性能不是很好,还有可能面临电脑死机,数据丢失等问题。

遇到这种情况,我们该如何解决呢?数据库的重要性显而易见!

现在, 我将用3分钟的时间,与您探讨该选择何种数据库,以及选择它的理由,是否有更优的解决方案呢?

MySQL数据库,90%的企业都会选择它

数据库选得好,企业的数据安全,资产安全,也就得到了保障。那么该如何选择数据库呢?这个跟你的业务量和业务服务行业,密不可分。

如果你只是上班打卡,用SQL server就可以了;

如果你要储存会话信息,用户配置信息,购物车数据,建议使用NoSQL数据库;

不过90%的企业或个人,首选数据库都是MySQL数据库。

为什么这么说?

因为,它集 低成本、高可用、可靠性强、易用性强、体积小、速度快开放源码 等特性于一身,所以在金融、财务、网站、 数据处理 等应用领域,它占据着独一无二的优势。

这也是几乎所有企业都选择它,来存储数据的原因。

加之MySQL数据库,支持多种存储引擎,支持大型数据库,可以处理成千上万条记录,还提供用于管理、检查、优化数据库 *** 作的工具。

因而,MySQL尤其受个人,以及中小企业的推崇。

虽然MySQL数据库简单易用,但我还是不会部署该怎么办?

别担心,现在市面上已经出现了,一种自带数据库的新型办公软件。

比如说,云表企业应用平台,一款兼容excel功能,但功能更为强大的办公软件,它就内嵌了MySQL数据库。 (文末有免费获取方式)

云表内嵌的MySQL数据库,有何优点?

1. 性能更加优化,更加兼容系统。因为云表的研发人员,时刻更新维护MySQL数据库。

2. 省去自己手动部署的麻烦。但如果你熟悉部署数据库,想把数据库改成Oracle或SQL server等数据库,也可以设置。(不过,我建议IT小白还是 “拿来即用” 就好)

3. 快速实时计算。数据分析实时交互,完全满足管理决策中的临时性分析,多变的业务需求,以及频繁的结果刷新。

4. 通过自带的内存计算引擎,无需事先建立CUBE,IT部门将告别报表延时报表分析,亿级数据秒级响应。

内嵌的MySQL数据库是否可靠

云表不仅是一款办公软件,同时还是一款开发工具。

通过它,你将解决以下问题:

复杂的数据运算,精确到行列的权限管控,以及工作流,海量用户同时在线办公,数据透视,制作像销售单,洽谈合同等表单报表,一份制作,即可重复录用......

你还可以通过它,与电子称、地磅等进行对接,与用友金蝶等三方系统集成,生成条形码,扫码出入库,生成移动端APP...... 基本上业务所需的功能,你都可以放心交给它做。

它最大的亮点就是,你可以 用使用excel的手法,用它来开发业务应用。

而且,可视化的 拖拉拽 之后,开发出来的ERP、WMS、OA、进销存等业务应用,还秉承了MySQL数据库增删改查的功能特性。

没错,用云表开发出来的业务应用,是允许二次开发的,而且功能可以随时增删改查,轻松满足大集团精细化的数据控制需求。

不过,大家最关心的应该是数据安全问题吧。

数据存放在云表内嵌的MySQL数据库,是安全不丢失的,它提供了多种数据存储的方式,本地部署,云端部署,混合部署,任君挑选!

正因如此,像 恒逸石化、许继电气、航天科工委、中铁、中冶、云南小松 等大型集团,才鼓励内部员工去学习云表。

篇幅所限,只说到这里,说太多你也不会看。

免费 的软获取方式在下方:

数据库的用处可大着呢,不仅可以实现数据共享,减少数据冗余度,还能实现对数据的集中控制,保持数据的一致性和可维护性。选取简单易用的数据库,你有什么好的建议呢,留言让我们看到噢!

题主强调了简单易用。所以推荐最简单三个。

1.Access。

2.Excel。

3.飞书文档、腾讯文档、石墨文档等的表格。

如果要做分析,数据量才比较大,建议Access,还是专业的更好一些。网上教程也很多,比较容易学。而且建议用早一点的版本,比如2003或者2007,Access这些年微软一直想从office里去掉,奈何用的人还是很多,所以不敢去掉,但是采取了一种比较恶心的方法让用户放弃,就是每发布一个新版本,就去掉一些好用的功能,所以说Access是越早的功能越强。

还一个推荐就是Sql Server Express版本,是SQL Server的免费版本,不要钱,基本功能都有,要比sqllite等强大的多

这要结合你个人实际情况来定,有计算机基础,懂一点数据库的话那么市场上的那些软件都可以用,常用有oracle,sqlserver,mysql等,要上手快还是sqlserver比较快,界面 *** 作也比较直观;如果一点基础都没有,但是又要分析数据的话可以用微软自带的一个access,这个上手比较快。决定用哪一种之后还是要买点教材看,简单的sql查询要会,熟练之后也能提高工作效率。

个人使用数据库的话,只存数据不做分析,SQLite就足够了。

说到数据分析,其实随着大数据这几年的发展,数据被认为是物理与信息融合中的关键技术,以及核心引擎。各行各业都在马不停蹄、轰轰烈烈地迈入了大数据时代。传统行业与互联网行业的界限开始发展交集和互补、渗透,传统的制造业再也不是闷头生产+再销售的模式,而是更多地聆听市场的声音,市场需要什么,消费终端就会相对应的给予其更多的多样化、个性化。

目前来看,两者的主要区别还处在以下几点:

一: 结构化数据和非结构化数据

传统行业更多的是结构化数据, 即行数据,存储在数据库里,可以用二维表结构来逻辑表达实现的数据,像以应用oracle、Sql Server等数据库的制造型企业的ERP系统。而互联网行业更多的是非结构化数据,就是不能以二维形态描述的,例如所有格式的办公文档、文本、图片、XML、HTML、各类报表、图像和音频/视频信息等等,像是医疗影像系统、教育视频点播、视频监控、国土GIS、设计院、文件服务器(PDM/FTP)、媒体资源管理等具体应用。

二:数据的体量

互联网行业海量的数据,由于互联网行业的特点,每时每刻都会产生海量的数据,它的数据往往是PB级的,1个PB有多大呢?它相当于2的50次方个字节。如果你对此没有概念,那么简单来说,《史记》约有52万多汉字,1个PB能够存储至少10亿部《史记》,以百度、腾讯、阿里为代表的企业。传统的一个生产制造工厂三个月制造的数据也不到100G。这是天大的一个差别。

三:看待数据的方式及数据分析目的不同

互联网行业会对这些海量的数据做数据分析,挖掘,无论是过去的数据还是即时的数据,数据不再是静止和陈旧的,任何被遗忘在服务器中的数据,都可能被重新利用,从而发现其中与我们、与行为、与现象的相关性,比如每逢“双十一”,“剁手党”都面临痛苦的抉择:打折的商品实在太多,买什么才好呢?最终一不小心,xyk刷爆,买了一大堆自己不需要的商品,只得含泪吃半年的“康师傅”…

谷歌公司每天都会收到来自全球超过30亿条的搜索指令,经过多年数据的累计,谷歌公司建立了“咳嗽”,“发热”等搜索关键字与流感地区的联系,于是在2009年谷歌成功地在美国预测了冬季流感的传播,并且精确到地区和州等等。而传统行业则不会过多去关注过去的数据,一般月底会盘点,出一些财务的数据分析报表,历史的数据会存放于备份库里,有问题才会去查找。

四:数据查找的效率及安全性

互联网行业往往存储着用户的个人行为信息,他要求保证绝对的安全或者准确性,比如12306,每到年底,面临数亿人迁徙的购票压力,在临近春节购票高峰峰值的时候,它的要求绝对是用户打开网页的速度可以慢一点没关系,但是要保证用户购票信息的绝对安全。如果用户付款购买了一张高铁动车票,你那边没收到钱款,那面对着上亿人的购票钱款,这个绝对是要出大问题的。

而传统行业没有那么大的数据量和访问量,往往解决好并发,死锁等等问题,保证系统的高可靠性和稳定性,偶尔也会发生丢失一条采购记录或者生产记录的问题,由于一般用户都会除了系统录入以外,还会纸质的记录,那么这个也是可以被容忍的

五:大数据技术快速获取有价值的信息

基于以上互联网行业的特点,当数据量不断增大时,也随之带来了一系列的问题。

比如假设解决某一问题有算法A 和算法B。在小量数据中运行时,算法A的结果明显优于算法B。也就是说,就算法本身而言,算法A能够带来更好的结果然而,人们发现,当数据量不断增大时,算法B在大量数据中运行的结果优于算法A在小量数据中运行的结果。这一发现给计算机学科及计算机衍生学科都带来了里程碑式的启示:当数据越来越大时,数据本身(而不是研究数据所使用的算法和模型)保证了数据分析结果的有效性。即便缺乏精准的算法,只要拥有足够多的数据,也能得到接近事实的结论。

由于能够处理多种数据结构,大数据能够在最大程度上利用互联网上记录的人类行为数据进行分析。大数据出现之前,计算机所能够处理的数据都需要前期进行结构化处理,并记录在相应的数据库中。但大数据技术对于数据结构的要求大大降低,互联网上人们留下的社交信息、地理位置信息、行为习惯信息、偏好信息等各种维度的信息都可以实时处理,立体完整地勾勒出每一个个体的各种特征。

一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱,大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。简单来说,大数据需要Hadoop=HDFS(文件系统,数据存储技术相关)+HBase(数据库)+MapReduce(数据处理)+……Others这样的分布式存储,分布式处理大数据架构,而不仅仅是传统的磁盘阵列数据存储处理方式。

互联网极大地改变了人们的生活,大量、高速、多变的信息每天都围绕在人们身边,我们需要更好的处理方式,去应对这种随时随地的变化。大数据技术将深远地改变互联网世界,改变整个生产生活的方式。随着技术的发展,大数据分析正在变得越来越容易,成本也越来越低,而且相比以前能更容易加速对业务的理解,越来越多的人开始进入大数据与数据分析行列,准备在这里干出自己的一番事业。

编辑于 2019-10-21


欢迎分享,转载请注明来源:内存溢出

原文地址:https://54852.com/sjk/9885969.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-03
下一篇2023-05-03

发表评论

登录后才能评论

评论列表(0条)

    保存