
我们公司去年用了YGData,我觉得还挺不错的。它是一个由多台X86服务器所组成的高效数据库运行平台,可支持Oracle、达梦、Mysql等多种当下主流数据库⌄非常实用!
它能有效保证IO高性能,利用Nvme高性能存储卡大大提升性能,如响应时间、IOPS和吞吐量,很好的解决了数据库IO瓶颈,提高系统的大并发大事务能力。
也能实现高带宽、低延迟,而且安全性高,将整合架构实现全架构冗余,避免单点故障。同时整个系统的处理能力和存储空间,都可以通过增加节点的方式实现几乎线性扩展,性能嗖嗖的提升。
再多数据量也不怕了,真的很不错!推荐你试试!
具体来说,本文包括以下内容:
事务
查询性能
用户和查询冲突
容量
配置
NoSQL 数据库
事务
事务可以观察真实用户的行为:能够在应用交互时捕获实时性能。众所周知,测量事务的性能包括获取整个事务的响应时间和组成事务的各个部分的响应时间。通常我们可以用这些响应时间与满足事务需求的基线对比,来确定当前事务是否处于正常状态。
如果你只想衡量应用的某个方面,那么可以评估事务的行为。所以,尽管容器指标能够提供更丰富的信息,并且帮助你决定何时对当前环境进行自动测量,但你的事务就足以确定应用性能。无需向应用程序服务器获取 CPU 的使用情况,你更应该关心用户是否完成了事务,以及该事务是否得到了优化。
补充一个小知识点,事务是由入口点决定的,通过该入口点可以启动事务与应用进行交互。
一旦定义了事务,会在整个应用生态系统中对其性能进行测量,并将每个事务与基线进行比对。例如,我们可能会决定当事务的响应时间与基线相比,一旦慢于平均响应时间的两个标准差是否就应该判定为异常,如图1所示。
图1-基于基线评估当前事务响应时间用于评估事务的基线与正在进行的事务活动在时间上是一致的,但事务会由每个事务执行来完善。例如,当你选定一个基线,在当前事务结束之后,将事务与平均响应时间按每天的小时数和每周的天数进行对比,所有在那段时间内执行的事务都将会被纳入下周的基线中。通过这种机制,应用程序可以随时间而变化,而无需每次都重建原始基线;你可以将其看作是一个随时间移动的窗口。
总之,事务最能反映用户体验的测量方法,所以也是衡量性能状况最重要的指标。
查询性能
最容易检测到查询性能是否正常的指标就是查询本身。由查询引起的问题可能会导致时间太长而无法识别所需数据或返回数据。所以不妨在查询中排查以下问题。
1 选择过多冗余数据
编写查询语句来返回适当的数据是远远不够的,很可能你的查询语句会返回太多列,从而导致选择行和检索数据变得异常缓慢。所以,最好是列出所需的列,而不是直接用 SELECT。当需要在特定字段中查询时,该计划可能会确定一个覆盖索引从而加快结果返回。覆盖索引通常会包含查询中使用的所有字段。这意味着数据库可以仅从索引中产生结果,而不需要通过底层表来构建。
另外,列出结果中所需的列不仅可以减少传输的数据,还能进一步提高性能。
2 表之间的低效联接
联接会导致数据库将多组数据带到内存中进行比较,这会产生多个数据库读取和大量 CPU。根据表的索引,联接还可能需要扫描两个表的所有行。如果写不好两个大型表之间的联接,就需要对每个表进行完整扫描,这样的计算量将会非常大。其他会拖慢联接的因素包括联接列之间存在不同的数据类型、需要转换或加入包含 LIKE 的条件,这样就会阻止使用索引。另外,还需注意避免使用全外联接;在恰当的时候使用内部联接只返回所需数据。
3 索引过多或过少
如果查询优化没有可用的索引时,数据库会重新扫描表来产生查询结果,这个过程会生成大量的磁盘输入/输出(I/O)。适当的索引可以减少排序结果的需要。虽然非唯一值的索引在生成结果时,不能像唯一索引那样方便。如果键越大,索引也会变大,并通过它们创建更多的磁盘 I/O。大多数索引是为了提高数据检索的性能,但也需要明白索引本身也会影响数据的插入和更新,因为所有相关联的指标都必须更新。
4 太多的SQL导致争用解析资源
任何 SQL 查询在执行之前都必须被解析,在生成执行计划之前需要对语法和权限进行检查。由于解析非常耗时,数据库会保存已解析的 SQL 来重复利用,从而减少解析的耗时。因为 WHERE 语句不同,所以使用文本值的查询语句不能被共享。这将导致每个查询都会被解析并添加到共享池中,由于池的空间有限,一些已保存的查询会被舍弃。当这些查询再次出现时,则需要重新解析。
用户和查询冲突
数据库支持多用户,但多用户活动也可能造成冲突。
1 由慢查询导致的页/行锁定
为了确保查询产生精确的结果,数据库必须锁定表以防止在运行读取查询时再发生其他的插入和更新行为。如果报告或查询相当缓慢,需要修改值的用户可能需要等待至更新完成。锁提示能帮助数据库使用最小破坏性的锁。从事务数据库中分离报表也是一种可靠的解决方法。
2 事务锁和死锁
当两个事务被阻塞时会出现死锁,因为每一个都需要使用被另一个占用的资源。当出现一个普通锁时,事务会被阻塞直到资源被释放。但却没有解决死锁的方案。数据库会监控死锁并选择终止其中一个事务,释放资源并允许该事务继续进行,而另一个事务则回滚。
3 批处理 *** 作造成资源争夺
批处理过程通常会执行批量 *** 作,如大量的数据加载或生成复杂的分析报告。这些 *** 作是资源密集型的,但可能影响在线用户的访问应用的性能。针对此问题最好的解决办法是确保批处理在系统使用率较低时运行,比如晚上,或用单独的数据库进行事务处理和分析报告。
容量
并不是所有的数据库性能问题都是数据库问题。有些问题也是硬件不合适造成的。
1 CPU 不足或 CPU 速度太慢
更多 CPU 可以分担服务器负载,进一步提高性能。数据库的性能不仅是数据库的原因,还受到服务器上运行其他进程的影响。因此,对数据库负载及使用进行审查也是必不可少的。由于 CPU 的利用率时时在变,在低使用率、平均使用率和峰值使用率的时间段分别检查该指标可以更好地评估增加额外的 CPU 资源是否有益。
2 IOPS 不足的慢磁盘
磁盘性能通常以每秒输入/输出 *** 作(IOPS)来计。结合 I/O 大小,该指标可以衡量每秒的磁盘吞吐量是多少兆。同时,吞吐量也受磁盘的延迟影响,比如需要多久才能完成请求,这些指标主要是针对磁盘存储技术而言。传统的硬盘驱动器(HDD)有一个旋转磁盘,通常比固态硬盘(SSD)或闪存更慢。直到近期,SSD 虽然仍比 HDD 贵,但成本已经降了下来,所以在市场上也更具竞争力。
3 全部或错误配置的磁盘
众所周知,数据库会被大量磁盘访问,所以不正确配置的磁盘可能带来严重的性能缺陷。磁盘应该适当分区,将系统数据目录和用户数据日志分开。高度活跃的表应该区分以避免争用,通过在不同磁盘上存放数据库和索引增加并行放置,但不要将 *** 作系统和数据库交换空间放置在同一磁盘上。
4 内存不足
有限或不恰当的物理内存分配会影响数据库性能。通常我们认为可用的内存更多,性能就越好。监控分页和交换,在多个非繁忙磁盘中建立多页面空间,进一步确保分页空间分配足够满足数据库要求;每个数据库供应商也可以在这个问题上提供指导。
5 网速慢
网络速度会影响到如何快速检索数据并返回给终端用户或调用过程。使用宽带连接到远程数据库。在某些情况下,选择 TCP/IP 协议而不是命名管道可显著提高数据库性能。
配置
每个数据库都需设置大量的配置项。通常情况下,默认值可能不足以满足数据库所需的性能。所以,检查所有的参数设置,包括以下问题。
1 缓冲区缓存太小
通过将数据存储在内核内存,缓冲区缓存可以进一步提高性能同时减少磁盘 I/O。当缓存太小时,缓存中的数据会更频繁地刷新。如果它再次被请求,就必须从磁盘重读。除了磁盘读取缓慢之外,还给 I/O 设备增添了负担从而成为瓶颈。除了给缓冲区缓存分配足够的空间,调优 SQL 查询可以帮助其更有效地利用缓冲区缓存。
2 没有查询缓存
查询缓存会存储数据库查询和结果集。当执行相同的查询时,数据会在缓存中被迅速检索,而不需要再次执行查询。数据会更新失效结果,所以查询缓存是唯一有效的静态数据。但在某些情况下,查询缓存却可能成为性能瓶颈。比如当锁定为更新时,巨大的缓存可能导致争用冲突。
3 磁盘上临时表创建导致的 I/O 争用
在执行特定的查询 *** 作时,数据库需要创建临时表,如执行一个 GROUP BY 子句。如果可能,在内存中创建临时表。但是,在某些情况下,在内存中创建临时表并不可行,比如当数据包含 BLOB 或 TEXT 对象时。在这些情况下,会在磁盘上创建临时表。大量的磁盘 I / O 都需要创建临时表、填充记录、从表中选择所需数据并在查询完成后舍弃。为了避免影响性能,临时数据库应该从主数据库中分离出来。重写查询还可以通过创建派生表来减少对临时表的需求。使用派生表直接从另一个 SELECT 语句的结果中选择,允许将数据加到内存中而不是当前磁盘上。
NoSQL 数据库
NoSQL 的优势在于它处理大数据的能力非常迅速。但是在实际使用中,也应该综合参考 NoSQL 的缺点,从而决定是否适合你的用例场景。这就是为什么NoSQL通常被理解为 「不仅仅是 SQL」,说明了 NoSQL 并不总是正确的解决方案,也没必要完全取代 SQL,以下分别列举出五大主要原因。
1 挑剔事务
难以保持 NoSQL 条目的一致性。当访问结构化数据时,它并不能完全确保同一时间对不同表的更改都生效。如果某个过程发生崩溃,表可能会不一致。一致事务的典型代表是复式记账法。相应的信贷必须平衡每个借方,反之亦然。如果双方数据不一致则不能输入。NoSQL 则可能无法保证「收支平衡」。
2 复杂数据库
NoSQL 的支持者往往以高效代码、简单性和 NoSQL 的速度为傲。当数据库任务很简单时,所有这些因素都是优势。但当数据库变得复杂,NoSQL 会开始分解。此时,SQL 则比 NoSQL 更好地处理复杂需求,因为 SQL 已经成熟,有符合行业标准的接口。而每个 NoSQL 设置都有一个唯一的接口。
3 一致联接
当执行 SQL 的联接时,由于系统必须从不同的表中提取数据进行键对齐,所以有一个巨大的开销。而 NoSQL 似乎是一个空想,因为缺乏联接功能。所有的数据都在同一个表的一个地方。当检索数据时,它会同时提取所有的键值对。问题在于这会创建同一数据的多个副本。这些副本也必须更新,而这种情况下,NoSQL 没有功能来确保更新。
4 Schema设计的灵活性
由于 NoSQL 不需要 schema,所以在某些情况下也是独一无二的。在以前的数据库模型中,程序员必须考虑所有需要的列能够扩展,能够适应每行的数据条目。在 NoSQL 下,条目可以有多种字符串或者完全没有。这种灵活性允许程序员迅速增加数据。但是,也可能存在问题,比如当有多个团体在同一项目上工作时,或者新的开发团队接手一个项目时。开发人员能够自由地修改数据库,也可能会不断实现各种各样的密钥对。
5 资源密集型
NoSQL 数据库通常比关系数据库更加资源密集。他们需要更多的 CPU 储备和 RAM 分配。出于这个原因,大多数共享主机公司都不提供 NoSQL。你必须注册一个 VPS 或运行自己的专用服务器。另一方面,SQL 主要是在服务器上运行。初期的工作都很顺利,但随着数据库需求的增加,硬件必须扩大。单个大型服务器比多个小型服务器昂贵得多,价格呈指数增长。所以在这种企业计算场景下,使用 NoSQL 更为划算,例如那些由谷歌和 Facebook 使用的服务器。
游戏 行业是阿里云最早聚焦的行业之一,近年来 游戏 行业的变化、云计算产品技术的变化都与日俱进。随着行业业务的变化、技术架构的演进以及阿里云产品的迭代演进,整体的产品技术选型在不同的 游戏 场景、业务场景也不尽相同。本文将聚焦阿里云d性计算产品在 游戏 行业的方案实践经验。
当前, 游戏 行业的各种场景和行业发展密不可分。简单回顾电子 游戏 的发展,80年代的黑白机,90年代的PC单机 游戏 ,00年代前夕随着互联网的发展网络 游戏 开始盛行,2010年后随着移动设备的逐渐普及,手游在国内开始兴起。
从 游戏 终端来区别,主要有:主机 游戏 (往往是3A 游戏 )、PC 游戏 、移动 游戏 和网页 游戏 等。目前出现跨平台多端 游戏 ,以及云 游戏 化的趋势。
关于 游戏 的品类区别会有非常多的维度:RPG(角色扮演)、MOBA类、竞技类、FPS(射击类)、休闲类、卡牌类、棋牌类、SLG(策略类)等等。目前有多品类融合玩法裂变的趋势。
随着国内防沉迷、版号因素,近年来 游戏 行业诞生了越来越多的精品 游戏 ,出海全球化乃至区域化,以及整体存量用户增速放缓,长线运营、精细运营以及私域社区等运营方式也在悄然变化。
不同的业务场景技术架构不尽相同,如竞技类 游戏 和卡牌类 游戏 对计算的需求就有所区别,云 游戏 与常规的网络 游戏 架构也有所区别。这里主要从 游戏 服和 游戏 平台、大数据、云 游戏 这四个目前常见的场景简单介绍其架构。
游戏 服,从 游戏 类型来看有RPG、FPS、MOBA、SLG、棋牌、休闲等等;从 游戏 平台来看通常有主机、手机、PC等;从业务发行来看有全球、国内、海外,从部署架构来看有集中部署和分区部署;从技术架构来看, 游戏 行业也有逐渐分层解耦的趋势,但与互联网应用相比,有一定其独特性。
因为 游戏 的强交互性特点, 游戏 技术架构与其他互联网应用相比有一定独特性。 游戏 需要保持会话连接,也就是从一个客户端到服务端的长连接,便于对客户端中玩家的 *** 作、行为等进行及时的反馈以及推送给共同 游戏 或对战的其他玩家,所以 游戏 普遍对网络质量更加敏感,网络质量较差的情况会使长连接断开或重连,引起玩家掉线。 游戏 也需要保持会话的状态,既服务端会保持一份玩家的实体,当玩家进行 *** 作时,下次通信的数据会依赖之前的通信的数据,这也是一些MMO(多人在线)大型 游戏 对网络吞吐性能要求较高的原因之一。再比如FPS、MOBA类等多人对战类 游戏 ,交互性更强,对网络延迟容忍度更低,要求低延迟。因为 游戏 需要比较高密度的记录玩家的 *** 作以及结果,所以有频繁写入数据的特点,这类场景需要较强的IO性能。因为 游戏 强交互性、低延迟的特点,其技术架构也和互联网应用不同,在逐渐分层解耦的同时,需要保证 游戏 玩家的交互效果,同时也会依赖到底层服务器的计算能力。
这些都是 游戏 场景普遍存在的特点:长连接保持会话、保持状态、低延迟网络、高IO吞吐、高计算性能。
游戏 的部署架构会结合 游戏 业务特点、 游戏 运营需求来制定 游戏 服务,有分区分服、全区全服业务逻辑,分区分服还是全区全服,最大的架构差异在于数据是不是一套。而从部署方式看,主要是集中式部署和分区域部署。
集中部署就是不论 游戏 玩家在哪里, 游戏 服务集中在一个区域,适合对网络延迟要求通常不高的 游戏 类型,如休闲类;分区部署是指 游戏 服务器根据 游戏 玩家地域分布,分区域部署,方便就近接入,适合对网络延迟要求较高的 游戏 类型,如MOBA、FPS类。
典型架构
MMO类有高并发特点,大量玩家并发的高计算量负载对服务器的计算能力和稳定性有着极高的要求。同时MMO类 游戏 有着比较强的PVE或PVP特性,对网络延迟的容忍度较低。
其中网关服务器负责所有网络数据包的转发,通常是网络负载较集中的点,对于网络吞吐能力要求较高。单个 游戏 区承载玩家数量高,逻辑服务器通常按照场景地图来划分,规模再大会通过分区的方式实现。
数据中心服务器负责缓存玩家数据并异步入库,保障玩家客户快速获取和写入数据,对于可用性要求较高,需要配合应用层实现数据容错机制。
日志服务器承载了大区所有业务行为的日志收集及处理的压力,对磁盘写入性能要求较高,通常采用多台分组方式实现。
(1)MMO 游戏 服性能与稳定需求,建议使用最第7代ECS实例,根据实际需求选型c计算型(CPU与内存配比1:2)/g通用型(1:4)/r内存型(1:8),Intel Ice Lake 29GHz基频35GHz睿频提供超高性能,能更好地优化 游戏 体验。
(2)异步落库以及日志服务器,对于磁盘读写性能要求高的场景,建议云上使用ESSD PL 0/1/2/3根据业务性能需要选择,避免磁盘读写瓶颈。
(3)在 游戏 日常版本更新中,需要各个地域Region镜像的快速复制,基于ESSD快照异地复制的能力,能够提升镜像复制效率。
(4)分区分服等场景往往需要快速地开服滚服合服,通过CADT云速搭、ESSd性伸缩、OOS运维编排、ROS资源编排等云上运维工具搭配产品使用,能够提升云上运维效率。
ii FPS、MOBA类 游戏 架构介绍
MOBA类 游戏 主要包括PVP系统、PVE系统、 游戏 平台等几个主要部分,其中PVP战斗是MOBA/FPS 游戏 的核心。
PVP、PVE、 游戏 平台功能部署于同一VPC中,构成 游戏 大区;战斗服务器(往往)单独跨地域部署。
游戏 客户端首先接入到登录服务器中,完成登录认证、计费等 游戏 平台逻辑。为避免单点问题,所以 游戏 平台服务往往需要高可用方案。可利用云上高可用方案,包括便捷的运维工具满足业务高可用需求。
FPS/MOBA竞技 游戏 ,往往对延迟特别敏感,可以想象,竞技类 游戏 中对战的 游戏 场景:玩家 *** 控人物,在地图里步伐飘逸,q声密集,每一颗子d都是一次时间加上空间的矢量计算,而且需要在主进程中完成计算,那么算力需求就随着房间玩家数量上升而指数爆炸,5V5的房间和大房间100人(吃鸡)对算力的需求完全不同。
游戏 这部分重算力场景,推荐阿里云7代高主频或七代实例,更高的单核性能提供更好的战斗效果。
战斗房间类 游戏 ,因为业务本身峰谷特性,灵活地使用云上资源的d性能力,往往会较好地优化整体的资源使用成本。阿里云d性计算本身提供了非常灵活的付费方式,包括常规的按量实例、包月包年实例、以及通过节省计划/预留实例券去抵扣按量实例资源,兼顾资源灵活使用的同时达到更优的成本。
此外,为更进一步释放开发运维的效率,当前一些 游戏 也采用了容器化技术架构,阿里云的ACK+ECS/ECId性容器实例组合搭配使用,更进一步释放了基础资源的灵活性和d性能力。
业务场景
游戏 平台(不限于FPS、MOBA类)主要提供的服务:官网、客服、注册、登录、充值、兑换、商城、推送、公告、社区、SDK及邮件、短信等公共服务;包括内容审核、视频录制、d幕、转码、剪辑、RTC这些业务需要的基础服务,以及运维监控、发布平台、测试平台这些运维等平台服务。
这部分更接近于通用的互联网技术架构,以服务为颗粒度解耦,接入->网关->应用->数据库。
技术特点
这往往通常需要构建高可用基础架构来提升稳定性,业务突发期往往需要一定的d性能力。相比于 游戏 服务这部分容器化就更加普及,也更容易通过云上的比如d性容器实例去应对流量峰值场景。在视频录制场景,对实时性要求较高时,往往会基于GPU能力构建,这部分阿里云也提供了vGPU/cGPU能力,释放GPU的灵活性。
大数据是当前 游戏 业务经营、 游戏 运营主要的技术手段,主要面向平台数据运营、 游戏 数据分析、广告转化分析、安全运营分析等 游戏 核心运营场景。不同的场景对实时性要求不同,实时查询检索通常是经营分析、客户受理、玩家监测、在线等场景;离线报表通常是玩家行为分析、用户画像、特征挖掘等场景。
总体而言,实时性业务更多是业务查询类、简单计算类任务,比如买量转化的分析;离线类基本是分析类、预测类任务,比如 游戏 玩法分析。
从技术架构来看,得益于开源社区技术栈的高丰富度,大数据具体的技术选择非常之多,整体从存算一体到存算分离,也诞生像数据仓库、数据湖乃至湖仓一体等概念。
从数据架构流程来看,从数据源->数据采集、传输->数据计算、存储->数据应用,其中可选看技术方案也需要因地制宜。
从部署架构来看,不同的 游戏 公司处在不同的数据建设阶段,会有不同的选择倾向,包括完全自建、基于云自建大数据、基于云上托管、以及利用更多云上成熟的产品技术去丰富整体的大数据能力集,而后者也成为越来越多客户的选择。
拿云上大数据方案举例来讲,比如实时计算部分,选择SLS采集、Kafka数据网关通道,通过Flink做数据计算,通过ES或CK做数据分析,通过ADB以及QuickBI做数据应用展示。离线方案通过OSS做冷数据存储,Spark、Hive、HDFS等组件做数据计算存储,通过CK汇聚分析,通过Dataworks做数据应用。
具体计算存储的产品选型,主要根据不同的业务特性以及大数据应用特性来区分,根据数据容量、IOPS、吞吐、读写特点以及性价比来选择。
如刚刚举例的实时计算/近实时计算场景,Flink具备高性能、低延迟特点,所以是计算密集、网络性能高场景,推荐选型七代ECS实例或6代增强实例;如HDFS需要超大存储容量,高吞吐,推荐D系列本地盘实例,如D2S存储型本地盘实例。Remote Shuffle Service等处理结果多的场景,读写处理频繁如大量的join计算,需要综合来看计算、网络、存储性能以及综合成本来选择通用实例(如第7代ECS实例)或i系列本地盘实例。所以,最终在云上的资源选型,在性能满足的前期下,需要评估通过网络传输数据成本高(云盘),还是就地取材计算成本高(本地盘),不同模型、不同量级选择不同。
从内存处理(成本最高、性能最好、存储容量最小)、SSD本地盘、HDD本地盘、ESSD云盘、OSS对象存储(成本最优、性能一般、存储容量最大),逐渐分层解耦,还带来一个好处:充分释放了云上d性的能力,可以利用更轻巧的d性计算产品(如SPOT抢占式实例方式,或ECI容器实例)进行大数据计算,达到更好的d性能力去满足业务需求的同时也能节约更多的成本。
云 游戏 主要分终端和云端。终端部分基于Windows、iOS、Linux等 *** 作系统的终端设备包括手机、平板、电脑、电视机、VR一体机等。云端架构主要是 游戏 应用层、云 游戏 平台层、IaaS基础资源层,应用层包括PC 游戏 、手游、VR 游戏 、H5 游戏 等多种类型的 游戏 应用;平台层云 游戏 必须的运营平台、支撑平台、流化技术平台等;IaaS基础资源层包括基础网络、基于X86架构以及ARM架构的GPU服务器。
云 游戏 落地,在技术上也经历了诸多挑战,为满足端到端高性能低时延,网络调度、指令串流、编解码、多终端的SDK适配等等都是云 游戏 场景中不可避免的技术问题。
对于云端算力来讲,阿里云解决了云端渲染、串流以及编解码问题,并通过全系列GPU产品来满足云手游、端游、VR乃至企业级视觉渲染场景的需求。
总结来讲,阿里云d性计算通过云上的串流、编码加速、渲染加速等全套的技术帮助 游戏 客户给云 游戏 玩家提供更好的性能体验,通过基于阿里云全球数据中心可以帮助云 游戏 客户覆盖更多的用户,通过GPU多种产品形态和整体的d性能力,也帮助到 游戏 客户去更快捷更灵活的构建其云 游戏 业务。
阿里云通过多年的技术积累和持续的运营,提供了大规模的基础设施云服务,目前在全球部署了26个地域、82个可用区,通过优异稳定的性能表现帮助 游戏 客户高效稳定地运行 游戏 业务,为玩家提供极致顺滑的 游戏 体验,并通过技术手段不断地帮助 游戏 客户优化用云成本。
国内的业务出海、 游戏 出海也是现阶段大的趋势之一,很多 游戏 公司已经把出海从业务可选项变成了必选项之一。在2022年3月,阿里云上线了韩国和泰国两大Region,能够为本地化的 游戏 业务提供更流畅、更稳定的 游戏 体验,以此希望能在 游戏 客户出海的业务领域,提供更多的帮助。
当然,作为内容与 科技 两大热门领域的交叉领域, 游戏 产业日新月异,架构也随着前端业务的需要不断改变。阿里云d性计算也针对 游戏 厂商的不同架构,陆续推出了不同的云服务器类型和付费方式,以及云上运维套件,以帮助客户降本增效。
原文链接:> 以上就是关于大家有用过什么好用的分布式存储数据库吗求推荐全部的内容,包括:大家有用过什么好用的分布式存储数据库吗求推荐、衡量数据库性能的重要指标、阿里云架构师解读四大主流游戏架构等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力! 欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)