学习Oracle数据库的心得体会

学习Oracle数据库的心得体会,第1张

学习数据库对我来说是一直都计划学的 没接触的时候总是觉得它比较深奥或是不可接近的电脑知识 尽管自己对电脑非常感兴趣 其实还是有些心理上的陌生感 学习电脑就和我们平时的其它科目学习一样感觉它有永无止境的知识 在这从初接触电脑时连个电脑的键盘都不敢动到现在连硬盘都也修理 其中的过程是多么长啊 数据库是我在高中时候听过 到了大学渐渐了解了些 但就其原理性的内容还不知道 也就是根本就不清楚什么是数据库 只是知道一个所谓的中国字典里的名词 我认识它是从我接触网页制作开始的 初用FrontPage做网页也就是弄几个框图 没什么东西但还觉得不错 后来听朋友说这是最简单最普通的东东 朋友告诉我真真的网页起码也用到数据库这些东西了 有什么前台的后台的 听我的都晕头转向了 感觉自己是一个长不大的菜鸟了 之后我就去查找相关资料发现在数据库有很多种 这才对它有所了解     大一 大二的时候想学可不知道怎么学 从什么地方学起 当时也没注意选课本上有这类的课程 到了大三正式的课程也轻松些了 仔细观摩了选修课发现有数据库 有数据库原理和Oracle数据库 当时感觉Oracle数据库既然是单独一门课程一定会讲的比较细 也能学到真正实用的内容 选上了这门课以后发现和我想的基本是一样的 老师对学生也比较和蔼可亲 对我们要求也不是很紧 让每个人都觉得轻轻松松就能把这门课程学完 没有多么紧张的作业 也没有太苛刻的要求     当老师在最后说这个课程结束了 回顾一下以前老师给我们讲过的东西 真的有很多是我们应该去注意的 学习完Oracle数据库后感觉Oracle可分两大块 一块是开发 一块是管理 开发主要是写写存储过程 触发器什么的 还有就是用Oracle的Develop工具做form 有点类似于程序员 当然我可不是什么程序员 有几个程序员朋友他们是我的偶像 开发还需要有较强的逻辑思维和创造能力 自己没有真正做过 但感觉应该会比较辛苦 是青春饭 管理则需要对Oracle数据库的原理有深刻的认识 有全局 *** 纵的能力和紧密的思维 责任较大 因为一个小的失误就会down掉整个数据库 相对前者来说 后者更看重经验 这些东西都是从老师哪里和朋友的讨论中得到的心得 也希望其他朋友能多多向老师和朋友请教 如果是个人单独靠自己来完成一个完美的数据库我觉得比较困难 现在基本上都是团队类型的 而且他们的效率高开发的周期也快 在烟台的 NET俱乐部认识几个比较历害的人 他们的团队精神我比较佩服 像我这样一个大学生和他们说起来太菜了 由于数据库管理的责任重大 很少公司愿意请一个刚刚接触Oracle的人去管理数据库 对于我们这些初出茅庐的新手来说 个人认为可以先选择做开发 有一定经验后转型 去做数据库的管理 当然 这个还是要看人个的实际情况来定 其实在烟台大学里学生中有做的好的也是有 只不过通常象这些兄弟们我觉得很少能发现在 因为我只知道一个 在烟雨楼台的BBS版块里有个程序版块 这位版主以前就是学校网络中心的牛人 他曾告诉我学习的方法就是 看书 思考 写笔记 做实验 再思考 再写笔记 我觉得说的很对 对于新手来说就要这样 不断的去努力奋斗 最后一定能得到自己想要的成果     对于学习Oracle数据库从网络上找资料我认为是比较好的 现在的网络又这么的发达应该去充分利用 我知道Oracle的官方网站 这里有Oracle的各种版本的数据库 应用工具和权威的官方文档 虽然我是个新手 但是常到哪些相关的数据库论坛或是网站觉得每次的收获都不小 网络对我来说可是个重要的东西 除了Oracle数据库对于其它的一些电脑知识都从网络里学习了不少 我常用的一个搜索网站就是大家都熟悉的百度了()     以前没接触过它 现在认识了它才知道Oracle的体系很庞大 要学习它 首先要了解Oracle的框架 它有物理结构(由控制文件 数据文件 重做日志文件 参数文件 归档文件 密码文件组成) 逻辑结构(表空间 段 区 块) 内存分配(SGA和PGA)算机的实际内存中得以分配 如果实际内存不够再往虚拟内存中写 后台进程(数据写进程 日志写进程 系统监控 进程监控 检查点进程 归档进程 服务进程 用户进程) SCN(System Change Number) 这些东西感觉都比较专业 我对它们也就是个知道 想要真真去认识我还得努力去做 虽然懂得还不是很多 起码会了基本的软件 *** 作 老师说我们用的都是客户端 服务端看不到 也不知道服务端是什么样的 只知道客户端就挺多东西的 没有真正的去学习利用是很难掌握的      Oracle数据库的学习使我对数据库的有了新的进步 以后再看到也就不至于什么也不懂 其实那么多数据库我觉得学好一门就行 只是他们的语言可能不大一样 学好一门后就可去认识其它的 这样应该有事半功倍的效果 就像我学习C语言 当时不能说是学习的棒 但不算差 所以我对以后的语言感觉都不是很困难 了解了VB C++还有网页中用的Html语言 asp语言都能看懂 起码可以对别人的东西进行了一下修改 因此 我感谢Oracle数据库老师给了我有用的知识 以便我在以后学习或认识更多的内容能有新的方法和思维 也能更加有效和快速的去消化吸收新的东西 希望在今后中 Oracle能给我更多帮助 让我在我熟悉的VB中运用上去 我以前的一个目标是要为学校的选课做一个选课助手来帮助大学 就用我的VB 不过因为种种原因一直没有完成 也包括我对数据库的不了解 因为学了Oracle以后知道第一项内容是通过SQL查询后得到的 如果去把它们联系起来还不是真正明白 不过我相信我的目标能在学习Oracle后得到进展 lishixinzhi/Article/program/Oracle/201311/18934

户A打开应用的界面,看到数据库的某条记录

b.用户B打开应用的界面,看到同样一条记录

c. 用户A对记录做了修改

d. 对于web应用而言[假设没有应用comet类似技术],通常B不知道这个修改,这时B也对同样这条记录做修改,那B就有可能覆盖A做的修改

这个问题在数据库中被称为丢失更新问题

2.我自己对这个问题的理解过程是这样的:

a. 不知道这个问题

我在做开发好长时间之后才意识到这个问题,意识到这个问题之后,我后来发现很长一段时间内都没真正搞明白为什么这是个问题-_- 而且我发现现在周围的很多同事,尤其是新毕业的学生,其实也一直过了很长时间都没明白这个问题,这说明吧不知道这个丢失更新问题是一个非常普遍的问题:)

b.用信号量以及 *** 作之前再次验证的方法解决

最开始的时候,测试发现了这样一个问题,要求解决,我把 *** 作系统的教科书搬来,对照着写了一个信号量semaphore类[那时候还是jdk 1.4.2,jdk里面没有concurrent包],花了好长时间测试这个semaphore的实现是正确的[重复发明轮子的血泪史..],

然后用来控制这个 *** 作,每次 *** 作前获取信号量,然后验证,再做真正的数据库 *** 作。。。相当于在应用层每次都只做一件事。

c. 再次理解

再后来,我看了Tom的这本9i和10g的书,书中提到前面的丢失更新过程,大概有点明白为什么这是个问题

8a7315603d51c12ef97a82729cdc4677.png

但是其实我有个疑问,对于数据库中的记录而言,A做的修改本来就有可能被B覆盖的,为什么这会是一个丢失更新问题呢? 正好项目里面又出现了类似的情况,我仔细观察了下,终于明白为什么这是个问题,以及为什么要使用对应的乐观悲观锁方案了。下面对此做详细说明

3. 一个比较清楚的场景

下面这个假设的实际场景可以比较清楚的帮助我们理解这个问题:

假设当当网上用户下单买了本书,这时数据库中有条订单号为001的订单,其中有个status字段是’有效’,表示该订单是有效的

后台管理人员查询到这条001的订单,并且看到状态是有效的

用户发现下单的时候下错了,于是撤销订单,假设运行这样一条SQL: update order_table set status = ‘取消’ where order_id = 001

后台管理人员由于在b这步看到状态有效的,这时,虽然用户在c这步已经撤销了订单,可是管理人员并未刷新界面,看到的订单状态还是有效的,于是点击”发货”按钮,将该订单发到物流部门,同时运行类似如下SQL,将订单状态改成已发货:update order_table set status = ‘已发货’ where order_id = 001

如果当当的系统这样实现,显然不对了,肯定要挨骂了,明明已经取消了订单,为什么还会发货呢?而且确实取消订单的 *** 作发生在发货 *** 作之前啊。 因为在这样的实现下,后台管理人员无论怎么做都有可能会出错,因为他打开系统看到有效的订单和他点发货之间肯定有个时间差,在这个时间差的时候总是存在用户取消订单的可能。

4. 当时的详细解决方法。几年前当测试人员告诉我系统存在这个问题的时候,我的解决方法是这样的, 首先,先把 *** 作系统的教科书搬来,然后对照着了一个semaphore,然后反复测试各种情况证明写的是正确的然后,

1. 获取一个信号量,保证每次只能有一个线程进入下面的步骤

2. 检查数据库,看这条订单是否状态是有效的

a. 如果有效则继续,进入发货步骤 b) 如果无效则返回,释放信号量,告诉用户状态已经发生改变

3. 发货,释放信号量

看到这里,也许很多人要骂我蠢了,直接把SQL语句改成下面这样吧就可以了么? update order_table set status = ‘已发货’ where order_id = 001 and status = ‘有效’ 是的,的确是这样。虽然我当时的项目的情况比和这个稍微复杂一点,涉及到多张表格,不能直接这么做,但当时的确不知道这个更新丢失问题,也没想到合适的类似方式,于是就在应用层做了这么一个每次实际上只能有一个用户在做真正的更新这样一个方式来解决,这样做的结果是,在应用层单独做了类似这么一个锁的机制。我记得当时的项目毕业答辩的时候,老师问我同步的这个问题不直接用数据库的锁的方案来解决?我当时胡乱回答了下,后来想起来,其实压根没理解老师的意思-_- 而且这样做有一个问题,假设在特殊情况下,这条订单被DBA直接修改了,没有经过应用,那么应用做这个 *** 作也会是错的,因为在2.a到3之前的这段时间,有可能正好是DBA直接修改的时候。那么3做的 *** 作也是不对的。 而且,现实情况是在后来的几年开发过程中,我也的确在一些不同的项目代码中看到,其他很多人也在使用类似的代码解决测试人员告诉他们的这些同步问题-_-

5.正确而简洁的解决方法

问题清楚了,也说明了我曾经使用的解决方案也是一个简洁直接的解决方案,纯粹是把简单问题复杂化,下面说说实际有效的解决方案就这个丢失更新问题,可以通过数据库的锁来实现,基本两种思路,一种是悲观锁,另外一种是乐观锁简单的说就是一种假定这样的问题是高概率的,最好一开始就锁住,免得更新老是失败另外一种假定这样的问题是小概率的,最后一步做更新的时候再锁住,免得锁住时间太长影响其他人做有关 *** 作

6. 乐观锁的方法

这里先说web开发中常用的乐观锁的方法:

1.很简单,就是使用前面所说的这样一条SQL,这其实是所谓使用”前镜像”的方式来保证需要更新的数据是符合要求的,

update order_table set status = ‘已发货’ where order_id = 001 and status = ‘有效’ Tom的书上举的例子是对所有列做更新,所以他的SQL大致如下 Update table set col1 = newcol1value, col2 = newcol2value…. where col1 = oldcol1value and col2 = oldcol2value…. 这个我觉得需要根据应用具体分析,如果需要判断所有的值,那就判断所有的值,如果只关心其中一个或部分值,那只需要取相关的值就好了,就比如这里的订单的状态

2.使用版本列[比如时间戳

这个方法比较简单,也最常用,就是在数据库表格中加一列last_modified_date,就是最后更新的时间,每次更新的时候都将这列设成systimestamp,当前系统时间

然后每次更新的时候,就改成这样 Update table set col = newvalue where id = ** and last_modified_date = old last_modified_date 这样,就可以检验出数据库的值是否在上次查看和这次更新的时候发生了变化,如果发生了变化,那么last_modified_date就变化了,以后的更新就会返回更新了0行,系统就可以通知用户数据发生了变化,然后选择刷新数据或者其他流程。

至于这个last_modified_date的维护,可以选择让应用每次都维护这个值,或者是使用存储过程来包装更新的 *** 作,或者是使用触发器来更新相关的值。几种方法各有利弊,比如应用维护需要保证每段相关代码都正确的维护了这个值存储过程有一定的开销,通常很多开发对写存储过程可能也不熟练触发器是简单的实现,但是也是有开销的。具体使用哪种方法需要根据实际情况具体取舍。

3.使用校验或Hash值

这种方法和前面的方法类似,无非是根据其他有实际意义的列来计算出一个虚拟的列,我个人觉得TOM在介绍这个纯粹是介绍了一种”奇技淫巧”,反正我是在实际过程中不知道哪里会需要这样的解决方案,或许也是因为我知道的太少了吧:)

4.使用Oracle 10g的ORA_ROWSCN

这个就是利用10g的一个ora_rowscn特性,可以对每行做精确追踪,不过这个要求在create table的时候就指定相关参数,表格如果创建了以后就不能用alter table来修改了,因为这依赖于物理的实际存储。 同样,我觉得这也可以归为”奇技淫巧”一类具体如果有兴趣了解详情的话,可以参考Tom的书

我们一直都在努力坚持原创.......请不要一声不吭,就悄悄拿走。

我原创,你原创,我们的内容世界才会更加精彩!

【所有原创内容版权均属TechTarget,欢迎大家转发分享。但未经授权,严禁任何媒体(平面媒体、网络媒体、自媒体等)以及微信公众号复制、转载、摘编或以其他方式进行使用。】

微信公众号

TechTarget

官方微博

TechTarget中国

相关资源:oracle乐观锁和悲观锁详细教程_oracle的乐观锁-Oracle文档类资源...

点击阅读全文

打开CSDN,阅读体验更佳

Oracle数据库悲观锁与乐观锁_diweikang的博客

注:对于悲观锁是针对并发的可能性比较大,而一般在我们的应用中用乐观锁足以。 Oracle的悲观锁需要利用一条现有的连接,分成两种方式,从SQL语句的区别来看,就是一种是for update,一种是for update nowait的形式。 1. 执行select xxx ...

ORACLE悲观锁和乐观锁_hongwei3344661的博客

1、无论是选择悲观锁策略,还是乐观锁策略。如果一个对象被上了锁,那么该对象都会受这个锁的控制和影响。 2、选择悲观锁策略,还是乐观锁策略,这主要是由应用和业务需求来确定的。如果你的应用和业务经常会出现从我看到要修改的记录的...

oracle 乐观锁和悲观锁详细教程

详细介绍了Oracle中乐观锁、悲观锁的原理及应用,并有实例

基于ORACLE的乐观锁实现原理

2019独角兽企业重金招聘Python工程师标准>>>...

继续访问

Oracle之悲观锁和乐观锁_hys21的博客

根据保护的对象不同,Oracle数据库锁可以分为以下几大类:DML锁(data locks,数据锁),用于实现并发存取并保护数据的完整性DDL锁(dictionary locks,字典锁),用于保护数据库对象的结构,如表、索引等的结构定义内部锁和闩(internal locks ...

oracle乐观锁和悲观锁详细教程_oracle的乐观锁-Oracle文档类资源...

内部包含oracle百度网盘下载链接以及密码。 oci.dll 12版本全部 资源是从Oracle官方网站下载,已测试可用 【白雪红叶】JAVA学习技术栈梳理思维导图.xmind 乐观锁行级锁 分布式锁 分区排队 一致性 一致性算法 paxos zab nwr raft gossip ...

Oracle创建悲观锁和乐观锁

为了得到最大的性能,一般数据库都有并发机制,不过带来的问题就是数据访问的冲突。为了解决这个问题,大多数数据库用的方法就是数据的锁定。 考虑下面的情况。如果我们先查询到数据,然后更新数据。这样会出现这样的情况。A线程查询的时候,B线程也在查询,当A线程准备更新的时候,B线程先获得 了更新锁,将这些行锁定了。A只能等待B更新完。当B线程更新完释放锁的时候,A获得锁,这时A会识别出字段已经

继续访问

Oracle并发控制中的乐观锁

数据库的管理员要分散他们的数据库,以便处理基于Web,B2B,电子商务的访问,快速的硬盘读写以及更多的资源或许只能解决一部分问题。疲乏的锁机制甚至会削弱拥有很好资源的应用性能。乐观锁可以大大改善具有较多事务处理的数据库载入性能,比如基于web的客户端访问。 悲观锁引发的问题: 大多数Oracle开发者已经非常熟悉悲观锁,即在对数据进行更新之前给数据加锁。使用熟悉的SELECT...FOR UP

继续访问

oracle乐观锁悲观锁学习笔记(更新中)_Evaron.Z的博客

首先解释下乐观锁和悲观锁的含义 乐观锁:乐观锁就是认为数据一般情况下不会造成冲突,所以在数据进行提交更新的时候,才会正式对数据的冲突与否进行检测,如果发现冲突了,则返回错误的信息。 悲观锁:悲观锁就是对数据的冲突采取一种悲观的...

【Oracle】乐观锁和悲观锁_◣NSD◥的博客_oracle悲观锁...

乐观锁对应于生活中乐观的人总是想着事情往好的方向发展,悲观锁对应于生活中悲观的人总是想着事情往坏的方向发展。这两种人各有优缺点,不能不以场景而定说一种人好于另外一种人。 悲观锁 ...

Oracle乐观锁悲观锁

1.乐观锁 当处理对象状态时为了防止冲突 例:一个下订单的状态status a.更新status为1购买,b取得status为1,这时a要退货把status改为2.这时如果b还按1的状态去处理,发货了。就出错了。 正确的做法为: 当b发货时,为了处理并发脏读,需要先根据原status状态去更新status为3订单处理中int res = update...

继续访问

【转】 Oracle中乐观锁定的四种实现方式

<br />Oracle中乐观锁定的四种实现方式<br /><br />转自 http://www.blogjava.net/lihao336/archive/2009/09/04/293934.html<br />更新前在应用中存储所要 *** 作行的“前映像”,更新时使用存储的旧记录来判断当前值是否已经改变; 使用一个特殊的列,这个列由一个数据库触发器或应用程序代码维护,可以告诉我们记录的 “版本”; 使用一个校验和或散列值,这是使用原来的数据计算得出的; 使用新增的 Oracle 10g 特性 ORA_R

继续访问

oracle的悲观锁和乐观锁

目录 1 悲观锁 1.1 单表 for update 1.2 关联表for update 1.3 解除for update 锁的占用 1.4 悲观锁缺点 2 乐观锁 2.1 比对法 2.2 版本戳 2.3 timestamp型 2.4 例子Demo 问select *from person for update或update perso...

继续访问

Oracle的悲观锁和乐观锁

为了得到最大的性能,一般数据库都有并发机制,不过带来的问题就是数据访问的冲突。为了解决这个问题,大多数数据库用的方法就是数据的锁定。 数据的锁定分为两种方法,第一种叫做悲观锁,第二种叫做乐观锁。什么叫悲观锁呢,悲观锁顾名思义,...

继续访问

oracle锁机制之悲观锁与乐观锁以及for update用法

目录 1 悲观锁 1.1 单表 for update 1.2关联表for update 1.3 悲观锁缺点 2乐观锁 2.1 比对法 2.2版本戳 2.3timestamp型 2.4 例子Demo 1 悲观锁 所谓的悲观锁:顾名思义,就是很悲观,每次去拿数据的时候都认为别人会修改,所以每次拿数据的时候都会上锁。这样别人拿数据的时候就要等待直到锁的释放。 数据库行级...

继续访问

oracle的乐观锁和悲观锁

一、问题引出 ① 假设当当网上用户下单买了本书,这时数据库中有条订单号为001的订单,其中有个status字段是’有效’,表示该订单是有效的; ② 后台管理人员查询到这条001的订单,并且看到状态是有效的; ③ 用户发现下单的时候下错了,于是撤销订单,假设运行这样一条SQL: update order_table set status = ‘取消’ whe

继续访问

Oracle锁定:悲观与乐观锁详解

Oracle数据库悲观锁与乐观锁是本文我们主要要介绍的内容。有时候为了得到最大的性能,一般数据库都有并发机制,不过带来的问题就是数据访问的冲突。为了解决这个问题,大多数数据库用的方法就是数据的锁定…… 以下是代码片段: select*fromtestwhereid=10也就是没有for update这种锁定数据的语句的话,就不会造成阻塞了。另外一种情况,就是当数据库数据被锁定的时候,也

继续访问

乐观锁与悲观锁——解决并发问题

引言 为什么需要锁(并发控制)? 在多用户环境中,在同一时间可能会有多个用户更新相同的记录,这会产生冲突。这就是著名的并发性问题。 典型的冲突有: 丢失更新:一个事务的更新覆盖了其它事务的更新结果,就是所谓的更新丢失。例如:用户A把值从6改为2,用户B把值从2改为6,则用户A丢失了他的更新。 脏读:当一个事务读取其它完成一半事务的记录时,就会发生脏读取。例如:用户A,B看到的...

继续访问

乐观锁和悲观锁策略的区别与实现

乐观锁和悲观锁策略的区别与实现 1、无论是选择悲观锁策略,还是乐观锁策略。如果一个对象被上了锁,那么该对象都会受这个锁的控制和影响。如果这个锁是个排它锁,那么其它会话都不...

继续访问

oracle的共享锁不起作用,ORACLE中的乐观锁、悲观锁、共享锁、排他锁

一、引入在数据库 *** 作中,如果不同的用户或者事务并发地访问同一数据,可能就会破坏数据到完整性,这时候我们就可以用锁来保证数据的一致性。二、概念1. 悲观锁就是很悲观地任认为我每次要修改数据时,其他的 *** 作总会来改变我要修改的数据,于是就将其加锁。这样一来,其他人只能等待我先放开锁后才能 *** 作数据。请看以下的示例。造数:CREATE TABLE test_yyw(id NUMBER(4),name VAR...

继续访问

oracle 锁定 问题

锁(lock)机制用于管理对共享资源的并发访问。 数据库中使用锁是为了支持对共享资源进行并发访问,与此同时还能提供数据完整性和一致性。 在Oracle中,你会了解到: ? 事务是每个数据库的核心,它们是“好东西”。 ? 应该延迟到适当的时刻才提交。不要太快提交,以避免对系统带来压力。这是因为,如果事务很长或很大,一般不会对系统有压力。相应的原则是:在必要时才提交,但是此前不要提

继续访问

最新发布 oracle数据库加悲观锁,Oracle 悲观锁跟乐观锁

EMPNO ENAME SAL7782 CLARK 2450.007839 KING 5000.007934 MILLER 1300.00在SQLplus中模拟应用可能执行的绑定调用,可以利用下面命名:SQL>variable empno numberSQL>variable ename varchar2(20)SQL>var...

继续访问

Oracle 乐观锁、悲观锁

oracle有悲观锁也有乐观锁。 悲观锁比较安全一些,可以防止丢失更新,但是就是互相等待,影响效率。 一般会用乐观锁,即开始 *** 作时,乐观的认为数据不会被其他人更改,直到提交时才加锁检查。比如在 *** 作的表上加一列,保存个时间戳,提交时检查是不是最新的。不过乐观锁失败的可能性比较大。 乐观锁,大多是基于数据版本( Version )记录机制实现。

继续访问

oracle乐观锁实例

oracle 悲观锁和乐观锁

写评论

评论

收藏

点赞

分享

前往CSDN APP阅读全文

阅读体验更佳

CSDN

成就一亿技术人

前往

目录

- 数据库分类维度:关系型/非关系型、交易型/分析型

- NoSQL数据库的进一步分类

- OLTP市场规模:关系型数据库仍占营收大头

- 数据库市场份额:云服务和新兴厂商主导NoSQL

- 开源数据库 vs. 商业数据库

- 数据库三大阵营:传统厂商和云服务提供商

最近由于时间原因我写东西少了,在公众号上也转载过几篇搞数据库朋友的大作。按说我算是外行,没资格在这个领域品头论足,而当我看到下面这份报告时立即产生了学习的兴趣,同时也想就能看懂的部分写点心得体会分享给大家。

可能本文比较适合普及性阅读,让数据库领域资深的朋友见笑了:)

数据库分类维度:关系型/非关系型、交易型/分析型

首先是分类维度,上图中的纵轴分类为Relational Database(关系型数据库,RDBMS)和Nonrelational Database (非关系型数据库,NoSQL),横轴的分类为Operational(交易型,即OLTP)和Analytical(分析型,即OLAP)。

按照习惯我们先看关系型数据库,左上角的交易型类别中包括大家熟悉的商业数据库Oracle、MS SQL Server、DB2、Infomix,也包括开源领域流行的MySQL(MariaDB是它的一个分支)、PostgreSQL,还有云上面比较常见的SQL Azure和Amazon Aurora等。

比较有意思的是,SAP HANA正好位于交易型和分析型的中间分界处,不要忘了SAP还收购了Sybase,尽管后者今天不够风光了,而早年微软的SQL Server都是来源于Sybase。Sybase的ASE数据库和分析型Sybase IQ还是存在的。

右上角的分析型产品中包括几款知名的列式数据仓库Pivotal Greenplum、Teradata和IBM Netezza(已宣布停止支持),来自互联网巨头的Google Big Query和Amazon RedShift。至于Oracle Exadata一体机,它上面运行的也是Oracle数据库,其最初设计用途是OLAP,而在后来发展中也可以良好兼顾OLTP,算是一个跨界产品吧。

再来看非关系型数据库,左下角的交易型产品中,有几个我看着熟悉的MongoDB、Redis、Amazon DynamoDB和DocumentDB等;右下角的分析型产品包括著名的Hadoop分支Cloudera、Hortonworks(这2家已并购),Bigtable(来自Google,Hadoop中的HBase是它的开源实现)、Elasticsearch等。

显然非关系型数据库的分类要更加复杂,产品在应用中的差异化也比传统关系型数据库更大。Willian Blair很负责任地对它们给出了进一步的分类。

NoSQL数据库的进一步分类

上面这个图表应该说很清晰了。非关系型数据库可以分为Document-based Store(基于文档的存储)、Key-Value Store(键值存储)、Graph-based(图数据库)、Time Series(时序数据库),以及Wide Cloumn-based Store(宽列式存储)。

我们再来看下每个细分类别中的产品:

文档存储 :MongoDB、Amazon DocumentDB、Azure Cosmos DB等

Key-Value存储 :Redis Labs、Oracle Berkeley DB、Amazon DynamoDB、Aerospike等

图数据库 :Neo4j等

时序数据库 :InfluxDB等

WideCloumn :DataStax、Cassandra、Apache HBase和Bigtable等

多模型数据库 :支持上面不只一种类别特性的NoSQL,比如MongoDB、Redis Labs、Amazon DynamoDB和Azure Cosmos DB等。

OLTP市场规模:关系型数据库仍占营收大头

上面这个基于IDC数据的交易型数据库市场份额共有3个分类,其中深蓝色部分的关系型数据库(RDBMS,在这里不统计数据挖掘/分析型数据库)占据80%以上的市场。

Dynamic Database(DDMS,动态数据库管理系统,同样不统计Hadoop)就是我们前面聊的非关系型数据库。这部分市场显得小(但发展势头看好),我觉得与互联网等大公司多采用开源+自研,而不买商业产品有关。

而遵循IDC的统计分类,在上图灰色部分的“非关系型数据库市场”其实另有定义,参见下面这段文字:

数据库市场份额:云服务和新兴厂商主导NoSQL

请注意,这里的关系型数据库统计又包含了分析型产品。Oracle营收份额42%仍居第一,随后排名依次为微软、IBM、SAP和Teradata。

代表非关系型数据库的DDMS分类中(这里同样加入Hadoop等),云服务和新兴厂商成为了主导,微软应该是因为云SQL Server的基础而小幅领先于AWS,这2家一共占据超过50%的市场,接下来的排名是Google、Cloudera和Hortonworks(二者加起来13%)。

上面是IDC传统分类中的“非关系型数据库”,在这里IBM和CA等应该主要是针对大型机的产品,InterSystems有一款在国内医疗HIS系统中应用的Caché数据库(以前也是运行在Power小机上比较多)。我就知道这些,余下的就不瞎写了。

开源数据库 vs. 商业数据库

按照流行度来看,开源数据库从2013年到现在一直呈现增长,已经快要追上商业数据库了。

商业产品在关系型数据库的占比仍然高达60.5%,而上表中从这列往左的分类都是开源占优:

Wide Cloumn:开源占比81.8%;

时序数据库:开源占比80.7%;

文档存储:开源占比80.0%;

Key-Value存储:开源占比72.2%;

图数据库:开源占比68.4%;

搜索引擎:开源占比65.3%

按照开源License的授权模式,上面这个三角形越往下管的越宽松。比如MySQL属于GPL,在互联网行业用户较多;而PostgreSQL属于BSD授权,国内有不少数据库公司的产品就是基于Postgre哦。

数据库三大阵营:传统厂商和云服务提供商

前面在讨论市场份额时,我提到过交易型数据库的4个巨头仍然是Oracle、微软、IBM和SAP,在这里William Blair将他们归为第一阵营。

随着云平台的不断兴起,AWS、Azure和GCP(Google Cloud Platform)组成了另一个阵营,在国外分析师的眼里还没有BAT,就像有的朋友所说,国内互联网巨头更多是自身业务导向的,在本土发展公有云还有些优势,短时间内将技术输出到国外的难度应该还比较大。(当然我并不认为国内缺优秀的DBA和研发人才)

第三个阵容就是规模小一些,但比较专注的数据库玩家。

接下来我再带大家简单过一下这前两个阵容,看看具体的数据库产品都有哪些。

甲骨文的产品,我相对熟悉一些的有Oracle Database、MySQL以及Exadata一体机。

IBM DB2也是一个庞大的家族,除了传统针对小型机、x86(好像用的人不多)、z/OS大型机和for i的版本之外,如今也有了针对云和数据挖掘的产品。记得抱枕大师对Informix的技术比较推崇,可惜这个产品发展似乎不太理想。

微软除了看家的SQL Server之外,在Azure云上还能提供MySQL、PostgreSQL和MariaDB开源数据库。应该说他们是传统软件License+PaaS服务两条腿走路的。

如今人们一提起SAP的数据库就想起HANA,之前从Sybase收购来的ASE(Adaptive Server Enterprise)和IQ似乎没有之前发展好了。

在云服务提供商数据库的3巨头中,微软有SQL Server的先天优势,甚至把它移植到了Linux拥抱开源平台。关系型数据库的创新方面值得一提的是Amazon Aurora和Google Spanner(也有非关系型特性),至于它们具体好在哪里我就不装内行了:)

非关系型数据库则是Amazon全面开花,这与其云计算业务发展早并且占据优势有关。Google当年的三篇经典论文对业界影响深远,Yahoo基于此开源的Hadoop有一段时间几乎是大数据的代名词。HBase和Hive如今已不再是人们讨论的热点,而Bigtable和BigQuery似乎仍然以服务Google自身业务为主,毕竟GCP的规模比AWS要小多了。

最后这张DB-Engines的排行榜,相信许多朋友都不陌生,今年3月已经不是最新的数据,在这里列出只是给大家一个参考。该排行榜几乎在每次更新时,都会有国内数据库专家撰写点评。

以上是我周末的学习笔记,班门弄斧,希望对大家有帮助。

参考资料《Database Software Market:The Long-Awaited Shake-up》

https://blocksandfiles.com/wp-content/uploads/2019/03/Database-Software-Market-White-Paper.pdf

扩展阅读:《 数据库&存储:互相最想知道的事 》

尊重知识,转载时请保留全文。感谢您的阅读和支持!


欢迎分享,转载请注明来源:内存溢出

原文地址:https://54852.com/sjk/10035188.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-04
下一篇2023-05-04

发表评论

登录后才能评论

评论列表(0条)

    保存