
给定一个字符串和一个模式,找出该字符串是否包含模式的任何排列。
排列被定义为字符串中字符的重新排列。
例如,“abc”有以下六个排列:
abc
acb
bac
bca
cab
cba
Example 1:
Input: String="oidbcaf", Pattern="abc"
Output: true
Explanation: The string contains "bca" which is a permutation of the given pattern.
Example 2:
Input: String="bcdxabcdy", Pattern="bcdyabcdx"
Output: true
Explanation: Both the string and the pattern are a permutation of each other.
Example 3:
Input: String="bcdxabcdy", Pattern="bcdyabcdx"
Output: true
Explanation: Both the string and the pattern are a permutation of each other.
Example 4:
Input: String="aaacb", Pattern="abc"
Output: true
Explanation: The string contains "acb" which is a permutation of the given pattern.
解题的关键:
1.首先patten的给出就已经明显的提示大家了,窗口的大小固定,所以窗口得在窗口尾巴位置大于等于pattern长度时收缩,以保持窗口的大小不变。
2.要做的就是检查一下窗口内的字符是否是pattern一种排列。
这需要借助数据结构,我觉得map和unordered_map都可,用map会好写一点,首先先把pattern的字符放入map,再把窗口内的字符放入另一个map,由于map具有自动排序的功能,所以若是二者互为重新排列,两个map是相同的。
用unordered_map会省空间一点,你需要记录窗口内每个字符的出现频率,来实现。
bool permutation(string str,string patten)
{
int winstat = 0;
bool res =false;
map<char,int> pat;
map<char,int> map;
for(int i = 0;i<patten.size();++i)
{
pat[patten[i]]++;//pattern的map初始化
}
for(int winend=0;winend<str.size();++winend)
{
map[str[winend]]++;
if(winend >= patten.size()-1)//收缩是为了保持窗口的大小
{
if(pat == map) return true;//比较两个map
map[str[winstat]]--;
if(map[str[winstat]] == 0)
{
map.erase(str[winstat]);
}
winstat++;
}
}
return false;
}
9.String Anagrams (hard)
问题描述
给定一个字符串和一个模式,找到给定字符串中模式的所有相同字母异序词。
每个相同字母异序词都是一个字符串的排列。
众所周知,当我们在寻找字符串的排列时不允许重复字符时,我们得到 N!个相同字母异序词
排列被定义为字符串中字符的重新排列。
例如,“abc”有以下六个排列:
abc
acb
bac
bca
cab
cba
Example 1:
Input: String="ppqp", Pattern="pq"
Output: [1, 2]
Explanation: The two anagrams of the pattern in the given string are "pq" and "qp".
Example 2:
Input: String="abbcabc", Pattern="abc"
Output: [2, 3, 4]
Explanation: The three anagrams of the pattern in the given string are "bca", "cab", and "abc".
解题的关键:
1.和上题思路一模一样,只需要将所有相同字母异序词都找出即可
vector<int> permutation(string str,string patten)
{
int winstat = 0;
vector<int> res;
map<char,int> pat;
map<char,int> map;
for(int i = 0;i<patten.size();++i)
{
pat[patten[i]]++;
}
for(int winend=0;winend<str.size();++winend)
{
map[str[winend]]++;
if(winend >= patten.size()-1)
{
if(pat == map) res.emplace_back(winstat);//找出所有符合题意的解
map[str[winstat]]--;
if(map[str[winstat]] == 0)
{
map.erase(str[winstat]);
}
winstat++;
}
}
return res;
}
10.Smallest Window containing Substring (hard)#
问题描述
给定一个字符串和一个模式,找到给定字符串中包含给定模式的所有字符出现的最小子字符串。
Example 1:
Input: String="aabdec", Pattern="abc"
Output: "abdec"
Explanation: The smallest substring having all characters of the pattern is "abdec"
Example 2:
Input: String="aabdec", Pattern="abac"
Output: "aabdec"
Explanation: The smallest substring having all character occurrences of the pattern is "aabdec"
Example 3:
Input: String="abdbca", Pattern="abc"
Output: "bca"
Explanation: The smallest substring having all characters of the pattern is "bca".
Example 4:
Input: String="adcad", Pattern="abc"
Output: ""
Explanation: No substring in the given string has all characters of the pattern.
1.显然窗口大小是在变化的,我们要让pattern中所有字母出现在窗口中,然后s使得窗口扩大或收缩得到一个最小的窗口大小。
2.需要unordered_map来记录字符出现的次数,还需要一个变量来记录窗口中出现pattern中字符的个数。
string findSubstring(const string &str, const string &pattern) {
int windowStart = 0, matched = 0, minLength = str.length() + 1, subStrStart = 0;
unordered_map<char, int> charFrequencyMap;
for (auto chr : pattern) {
charFrequencyMap[chr]++;
}
for (int windowEnd = 0; windowEnd < str.length(); windowEnd++)
{
char rightChar = str[windowEnd];
if (charFrequencyMap.find(rightChar) != charFrequencyMap.end())
{//注意这个括号,必须在map中找到这个字符才能增加匹配个数,两个条件都要满足
charFrequencyMap[rightChar]--;
if (charFrequencyMap[rightChar] >= 0) {
matched++;
}
}
// 当满足窗口内出现所有pattern内的字母时就可以收缩
while (matched == pattern.length()) {
//更新长度
if (minLength > windowEnd - windowStart + 1) {
minLength = windowEnd - windowStart + 1;
subStrStart = windowStart;
}
char leftChar = str[windowStart++];
if (charFrequencyMap.find(leftChar) != charFrequencyMap.end()) {
//收缩时根据移除出窗口的字符来跟新匹配次数和map内的出现次数
if (charFrequencyMap[leftChar] == 0) {
matched--;
}
charFrequencyMap[leftChar]++;
}
}
}
return minLength > str.length() ? "" : str.substr(subStrStart, minLength);
}
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)