隐函数是函数吗? 例:x2+y2=1

隐函数是函数吗? 例:x2+y2=1,第1张

函数是函数。x2+y2=1是函数。

如果方程f(x,y)=0能确定y是x的函数,那么称这种方式表示的函数是隐函数。而函数就是指:在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都有确定的值和它对应,y就是x的函数。这种关系一般用y=f(x)即显函数来表示。f(x,y)=0即隐函数是相对于显函数来说的。

如果方程f(x,y)=0能确定y与x的对应关系,那么称这种表示方法表示的函数为隐函数。 隐函数不一定能写为y=f(x)的形式,如x^2+y^2=0。因此按照函数设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值,变量x按照一定的法则有一个确定的值y与之对应,称变量y为变量x的(显)函数,记作 y=f(x)的定义。隐函数不一定是“函数”,而是“方程”。 也就是说,函数都是方程,但方程却不一定是函数。显函数是用y=f(x)表示的函数,左边是一个y右边是x的表达式 比如y=2x+1。隐函数是x和y都混在一起的,比如2x-y+1=0。有些隐函数可以表示成显函数,叫做隐函数显化,但也有些隐函数是不能显化的,比如e^y+xy=1。

隐函数求导法:

首先说明不是所有的隐函数都能显化,否则隐函数求导并不会有太突出的作用,当隐函数不能显化时,我们知道根据函数的定义,必然纯在一个函数,如果我们现在求其导数,不能通过显化后求导,只能运用隐函数求导法,这样即可解出

比如隐函数e^y+xy-e=0是不能显化的

隐函数求导法:(步骤)

1两边对X求导

)注意:此时碰到Y时,要看成X的复合函数,求导时要用复合函数求导法分层求导

2从中解出Y导即可(像解方程一样)

方程左边是(d/dx)(e^y+xy-e)=e^y(dy/dx)+y+x(dy/dx) A处

方程右边是(0)’=0

这步是错误的,e^y 对X求导,应看成X的复合函数,故结果为(e^y )(y导),同理xy对X求导,即为X导Y+XY导=Y+XY导

,按照此法,结合我给你的步骤,即可弄清楚隐函数求导的精髓了

隐函数求导法则

隐函数导数的求解一般可以采用以下方法:

方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;

方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);

方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;

方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。

举个例子,若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z)=0的形式,然后通过(式中F'y,F'x分别表示y和x对z的偏导数)来求解。

隐函数与显函数的区别

1、隐函数不一定能写为y=f(x)的形式,如x²+y²=0。

2、显函数是用y=f(x)表示的函数,左边是一个y,右边是x的表达式。比如:y=2x+1。隐函数是x和y都混在一起的,比如2x-y+1=0。

3、有些隐函数可以表示成显函数,叫做隐函数显化,但也有些隐函数是不能显化的,比如e^y+xy=1。

隐函数由隐式方程所隐含定义的函数。设F(x,y)是某个定义域上的函数。如果存在定义域上的子集D,使得对每个x属于D,存在相应的y满足F(x,y)=0,则称方程确定了一个隐函数。记为y=y(x)。显函数是用y=f(x)来表示的函数,显函数是相对于隐函数来说的。

隐函数理论的基本问题就是:在适合原方程的一个点的邻近范围内,在函数F(x,y)连续可微的前提下,什么样的附加条件能使得原方程确定一个惟一的函数y=(x),不仅单值连续,而且连续可微,其导数由;完全确定。隐函数存在定理就用于断定;就是这样的一个条件,不仅必要,而且充分。

扩展资料:

求导法则

对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有 y' 的一个方程,然后化简得到 y' 的表达式。 

隐函数导数的求解一般可以采用以下方法:

方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;

方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);

方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;

方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。

举个例子,若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z) = 0的形式,然后通过(式中F'y,F'x分别表示y和x对z的偏导数)来求解。

参考资料:

—隐函数

对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有y'的一个方程,然后化简得到y'的表达式。

隐函数求导法则

隐函数导数的求解一般可以采用以下方法:

方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;

方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);

方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;

方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。

举个例子,若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z)=0的形式,然后通过(式中F'y,F'x分别表示y和x对z的偏导数)来求解。

隐函数与显函数的区别

1)隐函数不一定能写为y=f(x)的形式,如x²+y²=0。

2)显函数是用y=f(x)表示的函数,左边是一个y,右边是x的表达式。比如:y=2x+1。隐函数是x和y都混在一起的,比如2x-y+1=0。

3)有些隐函数可以表示成显函数,叫做隐函数显化,但也有些隐函数是不能显化的,比如e^y+xy=1。

欢迎分享,转载请注明来源:内存溢出

原文地址:https://54852.com/langs/13495888.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2025-09-01
下一篇2025-09-01

发表评论

登录后才能评论

评论列表(0条)

    保存