老师对定积分的求导怎么求,能给点例子吗

老师对定积分的求导怎么求,能给点例子吗,第1张

积分求导公式:

例题:

扩展资料:

定积分一般定理:

1、设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

2、设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

3、设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

3、牛顿-莱布尼茨公式:

如果f(x)是[a,b]上的连续函数,并且有F′(x)=f(x),那么

用文字表述为:一个定积分式的值,就是原函数在上限的值与原函数在下限的值的差。

一般求导公式:

1、C'=0(C为常数);

2、(Xn)'=nX(n-1) (n∈R);

3、(sinX)'=cosX;

4、(cosX)'=-sinX;

5、(aX)'=aXIna (ln为自然对数);

6、(logaX)'=(1/X)logae=1/(Xlna) (a>0,且a≠1);

7、(tanX)'=1/(cosX)2=(secX)2

8、cotX)'=-1/(sinX)2=-(cscX)2

9、(secX)'=tanX secX;

10、(cscX)'=-cotX cscX;

参考资料:

-定积分

类型1、下限为常数,上限为函数类型

第一步:对于这种类型只需将上限函数代入到积分的原函数中去,再对上限函数进行求导。

第二步:对下面的函数进行求导,只需将“X”替换为“t”再进求导即可。

类型2、下限为函数,上限为常数类型

第一步:基本类型如下图,需要添加“负号”将下限的函数转换到上限,再按第一种类型进行求导即可。

第二步:题例如下,添加“负号”转换为变上限积分函数求导即可。

类型3、上下限均为函数类型

第一步:这种情况需要将其分为两个定积分来求导,因为原函数是连续可导的,所以首先通过“0”将区间[h(x),g(x)]分为[h(x),0]和[0,g(x)]两个区间来进行求导。

第二步:然后将后面的变下限积分求导转换为变上限积分求导。

第三步:接着对两个区间的变上限积分分别求导即可得到下面公式。

第四步:对于这种题,可以直接套公式,也可以自己推导。

总结

对于变限积分求导,通常将其转换为变上限积分求导,求导时,将上限的变量代入到被积函数中去,再对变量求导即可。

扩展资料

众所周知,微积分的两大部分是微分与积分。微分实际上是函数的微小的增量,函数在某一点的导数值乘以自变量以这点为起点的增量,得到的就是函数的微分;它近似等于函数的实际增量(这里主要是针对一元函数而言)。

而积分是已知一函数的导数,求这一函数。所以,微分与积分互为逆运算。

实际上,积分还可以分为两部分。第一种,是单纯的积分,也就是已知导数求原函数,而若F(x)的导数是f(x),那么F(x)+C(C是常数)的导数也是f(x),也就是说,把f(x)积分,不一定能得到F(x)。

因为F(x)+C的导数也是f(x),C是任意的常数,所以f(x)积分的结果有无数个,是不确定的,我们一律用F(x)+C代替,这就称为不定积分。

用公式表示是:f'(x)=g(x)->∫g(x)dx=f(x)+c

变限积分函数如何求导一般公式:见图中的注。

形如∫tf(t)ⅆt其中积分区域是0到x,它的导数怎么求

是tf(t)的积分,不是f(t)的积分。

将公式中的被积函数F(t)=tf(t),用公式,即求出变限积分函数的导数。

具体过程变限积分函数求导,见图。

欢迎分享,转载请注明来源:内存溢出

原文地址:https://54852.com/langs/13495608.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2025-09-01
下一篇2025-09-01

发表评论

登录后才能评论

评论列表(0条)

    保存