定积分公式求导且积分上下限为常数怎么做

定积分公式求导且积分上下限为常数怎么做,第1张

可以利用区间可加性分解成积分上限函数

例如∫(0~2)f(t)dt

=∫(0~x)f(t)dt+∫(x~2)f(t)dt

=∫(0~x)f(t)dt-∫(2~x)f(t)dt

之后就是积分上限函数求导的方法,即f(x)-f(x)=0

这也好理解为什么结果为零。

定积分上下限都是常数的话,定积分一定是个常数(几何意义上的面积),常数求导后当然是零。

定积分的正式名称是黎曼积分,详见黎曼积分。用自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a、b。

求定积分:求出原函数后,上下限代入原函数相减就行了;

定积分的上下限都是常数,其结果就是一个固定的常数(不管能不能积出来),那么求导的结果一定是0;

如果定积分的上下限中,至少一个不是常数,是变量x(或变量x的函数),则对于每一个取定的x值,定积分有一个对应值,这就是积分变限函数了,变限积分求导公式为:

(当上下限为x的函数时,求导时要用到复合函数求导公式,即还要乘以上下限的导数)

上限为a(x),下限为b(x)y=(a(x),b(x))∫f(t)dt已知f(x)原函数是F(x),F'(x)=f(x)(观察y=(a,b)∫f(t)dt=F(a)-F(b),括号里跟着代入就行了)所以y=(a(x),b(x))∫f(t)dt=F[a(x)]-F[b(x)]两边求导y'=(F[a(x)])'-(F[b(x)])'=F'[a(x)]a'(x)-F'[b(x)]b'(x)

扩展资料:

如果上限x在区间[a,b]上任意变动,则对于每一个取定的x值,定积分有一个对应值,所以它在[a,b]上定义了一个函数,这就是积分变限函数。

积分变限函数是一类重要的函数,它最著名的应用是在牛顿一莱布尼兹公式的证明中.事实上,积分变限函数是产生新函数的重要工具,尤其是它能表示非初等函数,同时能将积分学问题转化为微分学问题。积分变限函数除了能拓展我们对函数概念的理解外,在许多场合都有重要的应用。

连续性

定理一若函数f(x)在区间[a,b]上可积,则积分变上限函数在[a,b]上连续。

导数定理

定理二如果函数f(x)在区间[a,b]上连续,则积分变上限函数在[a,b]上具有导数,并且导数为:

如果函数f(x)在区间[a,b]上连续,X0为[a,b]内任一点,则变动上积限积分满足:

注:

(1)区间a可为-∞,b可为+∞;

(2)此定理是变限积分的最重要的性质,掌握此定理需要注意两点:第一,下限为常数,上限为参变量x(不是含x的其他表达式);第二,被积函数f(x)中只含积分变量t,不含参变量x。

原函数存在定理

若函数f(x)在区间[a,b]上连续,则积分变上限函数就是f(x)在[a,b]上的一个原函数。

积分变上限函数和积分变下限函数统称积分变限函数,一般进行计算求导的时候都转换为变上限积分求导。

总结:对于变限积分求导,通常将其转换为变上限积分求导,求导时,将上限的变量代入到被积函数中去,再对变量求导即可。

扩展资料

求导依据:

如果函数f(x)在区间[a,b]上连续,则积分变上限函数在[a,b]上具有导数:

1、下限为常数,上限为函数类型:

对于这种类型只需将上限函数带入到积分的原函数中去,再对上限函数进行求导。对下面的函数进行求导,只需将“X”替换为“t”再进求导即可。

2、下限为函数,上限为常数类型:

基本类型如下图,需要添加“负号”将下限的函数转换到上限,再按第一种类型进行求导即可。题例如下,添加“负号”转换为变上限积分函数求导即可。

3、上下限均为函数类型:

这种情况需要将其分为两个定积分来求导,因为原函数是连续可导的,所以首先通过“0”将区间[h(x),g(x)]分为[h(x),0]和[0,g(x)]两个区间来进行求导。然后将后面的变下限积分求导转换为变上限积分求导。

接着对两个区间的变上限积分分别求导即可得到下面公式。对于这种题,可以直接套公式,也可以自己推导。

欢迎分享,转载请注明来源:内存溢出

原文地址:https://54852.com/langs/13494555.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2025-09-01
下一篇2025-09-01

发表评论

登录后才能评论

评论列表(0条)

    保存