为什么狄利克雷函数是周期函数?

为什么狄利克雷函数是周期函数?,第1张

如下:

狄利克雷函数是周期函数证明:取T为任意一个确定的有理数,则当x是有理数时f(x)=1,且x+T是有理数,故f(x+T)=1,即f(x)=f(x+T);当x是无理数时,f(x)=0,且x+T是无理数,故有f(x+T)=0,即f(x)=f(x+T)。综上,狄利克雷函数是周期函数。

狄利克雷函数基本性质:

1、定义域为整个实数域R。

2、值域为{0,1}。

3、函数为偶函数。

4、无法画出函数图像,但是它的函数图像客观存在。

5、以任意正有理数为其周期,无最小正周期(由实数的连续统理论可知其无最小正周期)。

关于狄利克雷定理,相关内容如下:

在数论中,狄利克雷定理说明对于任意互质的正整数a,d,有无限多个质数的形式如a+nd,其中n为正整数,即在等差数列a+d,a+2d,a+3d,中有无限多个质数——有无限个质数模d同余a。

狄利克雷(1805~1859) Dirichlet,Peter Gustav Lejeune 德国数学家。对数论、数学分析和数学物理有突出贡献,是解析数论的创始人之一。1805年2月13日生于迪伦,1859年5月5日卒于格丁根。

中学时曾受教于物理学家GS欧姆;1822~1826年在巴黎求学,深受J-B-J傅里叶的影响 。回国后先后在布雷斯劳大学、柏林军事学院和柏林大学任教27年,对德国数学发展产生巨大影响。1839年任柏林大学教授,1855年接任CF高斯在哥廷根大学的教授职位。

在分析学方面,他是最早倡导严格化方法的数学家之一。1837年他提出函数是x与y之间的一种对应关系的现代观点。

在数论方面,他是高斯思想的传播者和拓广者。1836年狄利克雷撰写了《数论讲义》,对高斯划时代的著作《算术研究》作了明晰的解释并有创见,使高斯的思想得以广泛传播。

1837年,他构造了狄利克雷级数。1838~1839年,他得到确定二次型 类数的公式。1846年,使用抽屉原理。阐明代数数域中单位数的阿贝尔群的结构。

是的,因为狄利克雷函数点点不连续,所以处处不可导。其函数图像理论上客观存在,但无法画出确切图形。狄利克雷函数是一个定义在实数范围上、值域不连续的函数。

狄利克雷函数的图像以Y轴为对称轴,是一个偶函数,它处处不连续,处处极限不存在,不可黎曼积分。这是一个处处不连续的可测函数。

狄里克雷函数是周期函数,但是却没有最小正周期,它的周期是任意负有理数和正有理数。因为不存在最小负有理数和正有理数,所以狄里克莱函数不存在最小正周期。

欢迎分享,转载请注明来源:内存溢出

原文地址:https://54852.com/langs/13493420.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2025-09-01
下一篇2025-09-01

发表评论

登录后才能评论

评论列表(0条)

    保存