
维基链接http://zhwikipediaorg/wiki/%E6%AC%A7%E6%8B%89%E5%87%BD%E6%95%B0
以下度娘```````````````````````````````````````````````````````````````````````````````````````
这个极限不能用初等函数表达,通常使用的是q-Pochhammer symbolq-Pochhammer定义为(a,q) = lim (1-a)(1-aq)(1-aq^2)(1-aq^3)(1-aq^n)如果 a = q那么给出欧拉函数φ(q) = (q,q) = lim(1-q)(1-q^2)(1-q^3)(1-q^n)这里的欧拉函数是数论欧拉函数在实数上的解析扩延,所以所求的极限为φ(1/3) 在数值上约等于056012607792794894497
``````````````````````````````````````````````````````````````````````````````````````````````
好吧第一题看错了以为是sinx原来是sinπ
额我又看错了
是sin(π√1+4n^2)
```````````````````````````````````````````````````````````````(修改版如下)```````````````````````````````````````
第二题
是等价1的无穷大次方的变形
原式lim e^(nsinπ√(1+4n^2) )
=lim e^(nsin(π√(1+4n^2) -2nπ ) sin 变成->0
=lim e^(n(π√(1+4n^2) -2nπ ) 等价无穷小
=lim e^(2n^2(π√((1/4n^2)+1) -π ) 提出2n
= lim e^( (2n^2) ( π( √(1/4n^2+1) -1 ) ) 提出π
=lim e^( (2n^2) ( π( 1/8n^2 ) √(1/4n^2+1) -1可以等价无穷小
=lim e^(π/4)
应该对了吧
反正步骤就是这样了
```````````````````````````````````````````````````````````````````````````````````````````````````
第三题
0<= lim[n->0]x^2cos(1/x) <= lim[n->0]x^2=0
夹逼法
不用泰勒泰勒的方法我不会
望采纳望加分`````````O(∩_∩)O~
通常使用的是q-Pochhammer symbol
q-Pochhammer定义为
(a,q) = lim (1-a)(1-aq)(1-aq^2)(1-aq^3)(1-aq^n)
如果 a = q那么给出欧拉函数φ(q) = (q,q) = lim(1-q)(1-q^2)(1-q^3)(1-q^n)
这里的欧拉函数是数论欧拉函数在实数上的解析扩延,
所以所求的极限为φ(1/3)
在数值上约等于056012607792794894497
这个极限的收敛性可以证明,但极限的具体数值不是一个能表示出来的数。
见下面3张图(点击可放大):
首先,有一个普遍的关于乘积极限的定理。
其实挺简单的,但一般的书上都不写,所以我把证明也写出来了:
如果把这个定理应用到我们这道题,就是这样:
可能会觉得这个S的上下限比较松,可以用下面的方法收紧:
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)