python– 在TensorFlow 1.0教程中的Cuda问题看起来像TF找不到CUPTIlib64?

python– 在TensorFlow 1.0教程中的Cuda问题看起来像TF找不到CUPTIlib64?,第1张

概述这个问题与SSE AVX等警告无关.我已经将输出包括在内为完整性.问题是一些cuda libs的失败,我认为,最后,机器有一个NVIDA 1070卡,并且有一个Cuda libs,在这个过程的早期使用但是最后还缺少什么?我pip安装了TensorFlow 1.0版我还单独下载了repo以获得最新的教程.本教程专门用于获取所有Tensorboard功能的实例.

这个问题与SSE AVX等警告无关.我已经将输出包括在内为完整性.问题是一些cuda libs的失败,我认为,最后,机器有一个NVIDA 1070卡,并且有一个Cuda libs,在这个过程的早期使用但是最后还缺少什么?
我pip安装了TensorFlow 1.0版
我还单独下载了repo以获得最新的教程.
本教程专门用于获取所有Tensorboard功能的实例.
尝试从repo中的tensorFlow教程运行Minst_with_summarIEs.py(我将文件从repo复制到工作目录中),我正在使用Anaconda和Python 3.6我得到以下内容:

@H_403_10@(py36) tom@tomServal:~/documents/LearningRepos/Working$python Minst_with_summarIEs.pyI tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcublas.so.8.0 locallyI tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcudnn.so.5 locallyI tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcufft.so.8.0 locallyI tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcuda.so.1 locallyI tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcurand.so.8.0 locallyExtracting /tmp/tensorflow/mnist/input_data/train-images-IDx3-ubyte.gzExtracting /tmp/tensorflow/mnist/input_data/train-labels-IDx1-ubyte.gzExtracting /tmp/tensorflow/mnist/input_data/t10k-images-IDx3-ubyte.gzExtracting /tmp/tensorflow/mnist/input_data/t10k-labels-IDx1-ubyte.gzW tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions,but these are available on your machine and Could speed up cpu computations.W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions,but these are available on your machine and Could speed up cpu computations.W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions,but these are available on your machine and Could speed up cpu computations.W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions,but these are available on your machine and Could speed up cpu computations.W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions,but these are available on your machine and Could speed up cpu computations.W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions,but these are available on your machine and Could speed up cpu computations.I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:910] successful NUMA node read from SysFS had negative value (-1),but there must be at least one NUMA node,so returning NUMA node zeroI tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 0 with propertIEs: name: GeForce GTX 1070major: 6 minor: 1 memoryClockRate (GHz) 1.645pciBusID 0000:01:00.0Total memory: 7.92GiBFree memory: 7.48GiBI tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0 I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0:   Y I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0,name: GeForce GTX 1070,pci bus ID: 0000:01:00.0)Accuracy at step 0: 0.1213Accuracy at step 10: 0.6962Accuracy at step 20: 0.8054Accuracy at step 30: 0.8447Accuracy at step 40: 0.8718Accuracy at step 50: 0.8779Accuracy at step 60: 0.8846Accuracy at step 70: 0.8783Accuracy at step 80: 0.8853Accuracy at step 90: 0.8989I tensorflow/stream_executor/dso_loader.cc:126] Couldn't open CUDA library libcupti.so.8.0. LD_liBRARY_PATH: :/usr/local/cuda/lib64F tensorflow/core/platform/default/gpu/cupti_wrapper.cc:59] Check Failed: ::tensorflow::Status::OK() == (::tensorflow::Env::Default()->GetSymbolFromlibrary( GetDsoHandle(),kname,&f)) (OK vs. Not found: /home/tom/anaconda3/envs/py36/lib/python3.6/site-packages/tensorflow/python/_pywrap_tensorflow.so: undefined symbol: cuptiActivityRegisterCallbacks)Could not find cuptiActivityRegisterCallbacksin libcupti DSOAborted@H_403_12@

在我看来,TensorFlow的安装可能会遗漏一些东西看到上面的几行?
怎么修?
另请参阅GitHub上的此问题:https://github.com/tensorflow/tensorflow/issues/7975

答案发布在GitHub上,似乎有一个安装错误可以修复:

@H_403_10@adding /usr/local/cuda/extras/CUPTI/lib64 to your LD_liBRARY_PATH@H_403_12@

如果@mrry重新打开以便其他人可以看到正确的解决方案,将会有所帮助.最佳答案另请参阅GitHub上的此问题:https://github.com/tensorflow/tensorflow/issues/7975

您可以尝试git-hub问题建议的apt-get安装,但这不适合我:这样做:

答案发布在GitHub上,似乎有一个安装错误可以修复:

@H_403_10@adding /usr/local/cuda/extras/CUPTI/lib64 to your LD_liBRARY_PATH@H_403_12@

你可以通过编辑.bash配置文件来做到这一点 总结

以上是内存溢出为你收集整理的python – 在TensorFlow 1.0教程中的Cuda问题看起来像TF找不到CUPTI / lib64?全部内容,希望文章能够帮你解决python – 在TensorFlow 1.0教程中的Cuda问题看起来像TF找不到CUPTI / lib64?所遇到的程序开发问题。

如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。

欢迎分享,转载请注明来源:内存溢出

原文地址:https://54852.com/langs/1206241.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2022-06-04
下一篇2022-06-04

发表评论

登录后才能评论

评论列表(0条)

    保存