每个人的体质不一样也就导致了不同的人对冷热会有不同的耐受程度,也就产生了有的人非常怕冷,有的人非常怕热,这都是体质和环境的因素问题,所以并不是说每个人类都一样的怕冷或怕热,要具体问题具体分析。
环境的因素其实是对人类的温度承受能力有很大的影响的,有些人从小生活在北方地区,从小到大接受过的温度都是很低的,在冬天的时候室外的温度都是低于零下的,在这样的环境中生活可能就会非常能够承受寒冷,他们承受的寒冷程度就是比较低的。因此只要他们来到了别的寒冷地区,都会觉得没有那么冷。因此这类人就会比较怕热,不怕冷了。而有些人如果一直生活在南部地区,也会习惯当地的炎热,可能就更加怕冷,环境因素真的很影响人。
而有些人则是因为体质因素的不同,导致了不同人对于冷热的感受程度。比如有些女生体质比较虚寒,到了冷的地方可能只会加重手脚的冰冷,甚至身体会产生很多不良的反应,因此她们就宁愿承受高温也不想严寒。而有些男生特别容易出汗,觉得出汗之后不是很舒服,他们的体质都是非常的燥热的,这时候这些男生肯定更加喜欢不容易出汗的干爽的低温。
不过无论是低温还是高温,其实都是地球的正常温度,有些人难以承受某一种温度,都是非常正常的,只要记得冷了多穿衣服,热了之后减少衣服,就可以预防自己面对不适应的天气的不良反应。其实人类对于天气的惧怕都是可以人为的改变的,是在怕热怕冷就别出门,平时注意身体的养护,才能在各种天气都不会难以忍受,也比较利于生活。
其实,所有的病毒都是喜寒怕热的。但是,病毒为什么喜寒怕热,却很少有人说到。本文就从化学的角度来解释一下,而这要从病毒的结构说起。
病毒的结构是什么?病毒的中间是一个遗传物质即一个核酸分子——DNA或RNA,外面是一些蛋白质分子。病毒只有找到了宿主,在宿主细胞内才可以复制自己;离开了宿主,病毒根本不能进行自我复制,因为病毒没有自己的代谢机构,没有酶系统。或者说,离开了宿主的病毒不是完整的生命形态,而只是一些化学意义上的分子。
说到这里,在化学家看来就是一个非常简单的问题了:温度升高不利于分子的稳定性。
众所周知,分子是由原子构成的。原子之所以能够构成分子,是因为原子之间有相互作用。有些相互作用比较强,能够在原子之间形成共价键。比如,氢分子是由两个氢原子组成的体系,两个氢原子核(质子带正电)相互排斥,两个电子(带负电)也相互排斥,但质子与电子却相互吸引。根据量子力学,可以计算得到这个体系的能量与两个原子核之间距离(核间距)有下图所示的关系。
我们把两个原子核相距很远时(即独立的两个原子)体系的相对能量设为能量的零点,从图中可见,当两个原子核靠近时,体系能量降低;但当两个原子核靠得很近时,体系的能量又迅速增高。在图中所示的“平衡核间距”处,体系的能量最低。
核间距大于或小于平衡核间距都将使体系的能量升高,从而处于不稳定状态。这就像在洼处的小球,只有在洼底才能够平衡,离开洼底就不会平衡,会自动滚回底部。
氢分子的平衡核间距约为0.074纳米,此时氢分子的能量最低,分子体系最稳定。图中虚线的长度表示氢分子与两个独立的氢原子的能量差,就是两个氢原子形成共价键的键能。这也就是氢分子的稳定化能。正是因为氢分子比两个单独的氢原子能量低,氢分子才能够稳定存在。
但是,原子本身有动能,它要自由行动,要离开这个平衡核间距。稳定化能的存在,就会把离开平衡核间距的氢原子拉回到平衡核间距。所以,通常情况下,氢原子就在平衡核间距附近做振动。就像落到坑中的小球,在坑底做振动一样。如果坑比较浅,而小球的动能比较大,小球就有可能跑到坑外去。同样,如果分子的稳定化能比较小,而原子的动能比较大,原子就可能挣脱稳定化能的束缚,离开分子,导致分子被解离了。
显然,分子的稳定化能越大,这个分子越稳定。而原子的动能越大,就越能破坏分子的稳定。这是矛盾的两个方面。
原子的动能大是什么意思?
从宏观上看,就是由这些原子组成的体系的温度高。温度所表示的就是组成体系的原子的平均动能。上面说过,原子的动能越大,就越能破坏分子的稳定,也就是说,体系的温度越高,分子的稳定性越差。在较高的温度下,分子容易解离。
问1
既然温度越高分子的稳定性越差,那我们怎么没有感觉到因为温度升高,氧气、水、石头等常见的物质分解掉或者变质了呢?
答1
这是因为组成这些物质的分子都是非常稳定的分子,即组成这些分子的原子之间形成的共价键非常牢固。
就拿上面所说的氢分子来说,它的键能(也就是把键拉断所需要的能量)是217千焦/摩尔。上图中的“坑”简直是一口非常深的“井”,需要非常大的动能才能够跳出这口“井”。
也就是说,用加热升高温度的办法解离氢分子是非常困难的。在2000K的高温下,只有大约1‰的氢分子会解离,3000K的高温下也只有不到10%发生解离。我们身边常见的水、氧气、石头等都是经由类似的共价键结合的,所以都是很稳定的分子。
可是,像蛋白质这样的分子就不同了。蛋白质分子是由千百个氨基酸分子组成的,每一个氨基酸分子有十几个到几十个原子,这数以千计的原子也都是以共价键结合起来的。氨基酸分子排列次序不同,蛋白质分子也不同,这是蛋白质分子的一级结构。这一长串原子并不是排成一条长长的直线。由于各个原子吸引电子的能力有大有小,所以在这些原子外围所带有的正负电荷也不同。这些正负电荷之间存在着静电相互作用,这些静电相互作用比共价键的作用要弱许多,其中有些较大的相互作用被称为“氢键”。
在这些静电相互作用,特别是氢键的作用下,组成蛋白质的原子排列而成的“线”便卷曲、折叠起来,形成了蛋白质的二级结构。而二级结构之间还有更弱的静电相互作用,组成了蛋白质的三级甚至四级结构。蛋白质就具有这些非常精细、非常巧妙的高级结构。由于形成这些高级结构的作用力是很弱的静电相互作用,它们的稳定化能,也就是上图的“坑”非常浅。温度略高,这些高级结构就被破坏了,蛋白质也就“变质”了。蛋白质变质了,病毒也就失活了。所以,病毒都是喜寒怕热的。
问2
既然蛋白质这样不稳定,那我们人还有其他生物为什么能够稳定存在?
答2
这是因为生物体中的蛋白质都存在于活的细胞中,它们受到细胞环境的保护,增加了它们的稳定性。更重要的是,它们是处在新陈代谢的过程中。
也就是说,蛋白质在不断地分解,同时也在不断地生成,保持总体上的平衡状态。而包容这些蛋白质的细胞也在不断地新陈代谢。一旦生物死亡,它们体内的蛋白质就会迅速变质。
沿着这个思路,我们也能够解释为什么细菌并不像病毒那样喜寒怕热,反而是喜欢比较温暖的环境。原因在于细菌是活的细胞。温度低了,虽然蛋白质较为稳定,但是细胞的生长、繁殖会变得很慢,甚至会休眠。在温暖的环境下,虽然蛋白质稳定性差了,容易分解,但是它的生成也快,细胞的生长、繁殖更是大大加快了,细菌的数量仍然会急剧增加。
侵入我们生物体内的病毒,是依赖于生物细胞而生存、繁殖的。虽然温度的升高使它们不稳定,但是,由于它们能够在生物细胞内迅速复制自己,致使这些病毒在体内迅速地大量泛滥,弄得不好,甚至会危及生物体的生命。
由于病毒是喜寒怕热的,而细菌在相对温暖环境下能够快速生长繁殖,所以我们看到,在冬春季比较寒冷的天气条件下,由流感病毒、SARS病毒、新型冠状病毒等病毒感染所引起的呼吸道疾病容易流行;而在夏日温暖的环境中,痢疾、腹泻等由细菌引起的消化道疾病容易高发。
欢迎分享,转载请注明来源:优选云