1、全连接神经网络解析:对n-1层和n层而言,n-1层的任意一个节点,都和第n层所有节点有连接。即第n层的每个节点在进行计算的时候,激活函数的输入是n-1层所有节点的加权。
2、全连接的神经网络示意图:
3、“全连接”是一种不错的模式,但是网络很大的时候,训练速度回很慢。部分连接就是认为的切断某两个节点直接的连接,这样训练时计算量大大减小。
神经网络
1、一般的SGD的模型只有一层WX+b,现在需要使用一个RELU作为中间的隐藏层,连接两个WX+b,仍然只需要修改Graph计算单元为:
而为了在数学上满足矩阵运算,我们需要这样的矩阵运算:
这里N取1024,即1024个隐藏结点。
2、于是四个参数被修改:
其中,预测值计算方法改为:
3、计算3000次,可以发现准确率一开始提高得很快,后面提高速度变缓,最终测试准确率提高到88.8%。
估计是假的,因为抖音上很多东西都是不可以的,我觉得你还是就是提高自己的这个意识是比较好一点的。下面是一些无关紧要的,来源于百度百科!!!其实这只是一种普通的“神经连接”的现象!是怎么连接的呢?就是把那些一定距离的“车辆图像”所对应的神经细胞,直接连接到“躲避”“的运动神经元”也只有这样才能让我们“迅速”的产生“躲避”的行为。
十:脑细胞是怎么生长出来的?(新探索)
●脑细胞生长的方式主要有两种:
①“主动生长”方式进行向自身的周边随意连接。这点很容易就可以得到验证,比如人们经常将一些“脑细胞”放在切片上进行观察,最后观察到年纪越轻其“脑细胞”生长得就越快。
②“被动生长”的方式向特定的目标进行连接。这个意思就是:当外界的“客观事物”或“思想活动”将一些不同“感子”同时出现时,这些“感子”所对应的“神经细胞”也同时“活跃”起来,而这些“活跃”起来的“神经细胞”就会通过各种渠道努力的“连接”在一起。
神经细胞的“主动生长”和“被动生长”有什么区别,为什么会有这样的区别?
●“主动生长”的好处是“时间快”;其弊端是:它的“神经连接”比较“乱”,必须进行“整理”,从而使那些“错误连接”和“无用连接”都“灭亡”,只留下“正确”的“有用”的“连接”。这也就是为什么“小孩子”的“主动生长”比较旺盛,但身体的“协调能力”和“认知能力”比较弱,而且在其长大的过程中大部分的“神经连接”都要“灭亡”,这很明显的,是件好事。
●“被动生长”的好处就是几乎不会产生没有用的“神经连接”;但坏处就是“时间较慢”
●所以,总的来说:“主动生长”与“被动生长”优势互补,使我们的“脑神经”最优化的进行生长,但其弊端就是“成年人”的大脑一旦受伤,恢复的时间要“相当长”。
为什么“儿童”的脑神经,会比“成人”脑神经更依赖“主动生长”,而随着年龄的增长,“脑神经”的“主动生长活力”却持续下降?
●这是因为儿童时期“思考”、“判断”、“分析”等思维能力并不需要很强,所以就可以更依赖“主动生长”,来迅速的增多脑细胞作为“备用”,但与此同时也有着其弊端:“神经连接错误”或“无用连接”太多了,需要修剪。
●但如果过了“儿童”的年龄段,还继续让我们的“脑神经”进行很快速的“主动生长”,那么就会使我们做的各种“神经修剪”工作全部白费,最后又变得和“幼儿”一样“身体失调”、“语无伦次”等。
●所以为了最优化的进行“导存”(引导存在),就形成了上述的这种“局面”。
十一:大脑是如何“编码”的?(新探索)
那么“大脑意识”究竟是如何对各种“感觉信息”进行“编码”的呢?
不知道你对专业名词熟悉吗?否则,很难讲清楚。猜想你应该是想问神经元细胞之间是如何传递的吧!神经细胞是高等动物神经系统的结构单位和功能单位,又被称为神经元(neuron)。
突触(synapse)是神经元传递登记处的重要结构,它是神经元与神经元之间,或神经元与非神经细胞之间的一种特化的细胞连接,通过它的传递作用实现细胞与细胞之间的通讯。在神经元之间的连接中,最常见是一个神经元的轴突终末与另一个神经元的树突、树突棘或胞体连接,分别构成轴-树(axodendritic)、轴-棘(axospinous)、轴-体(axosomatic)突触。此外还有轴-轴(axoaxonal)和树-树(dendrodendritic)突触等。突触可分为化学突触(chemical synapse)和电突触(electrical synapse)两大类。前者是以化学物质(神经递质)作为通讯的媒介,后者是亦即缝隙连接,是以电流(电讯号)传递信息。哺乳动特神经系统以化学突触占大多数,通常所说的突触是指化学突触而言。
一个神经元既可与其他神经元建立许多突触连接,亦可接受来自其他神经元的许多突触信息。一个神经元上突触数目的多少视不同的神经元而有很大差别,例如小脑的颗粒细胞只有几个突触,一个运动神经元要有1万个左右突触,而小脑的蒲肯野细胞树突上的突触就有10万个以上。一个神经元上众多的突触中,有些是兴奋性的,有些则是抑制性的。如果所有兴奋性突触活动的总和超过抑制性突触活动的总和,并足以刺激该神经元的轴突起始段产生动作电位时,则该神经元发生兴奋;反之,则表现为抑制。
好了,不知道你明白没有,下面再补充些解释。
神经元的基本结构:可分为胞体和突起两部分。胞体包括细胞膜、细胞质和细胞核;突起由胞体发出,分为树突(dendrite)和轴突(axon)两种。树突较多,粗而短,反复分支,逐渐变细;轴突一般只有一条,细长而均匀,中途分支较少,末端则形成许多分支,每个分支末梢部分膨大呈球状,称为突触小体。在轴突发起的部位,胞体常有一锥形隆起,称为轴丘。轴突自轴丘发出后,开始的一段没有髓鞘包裹,称为始段(initial segment)。由于始段细胞膜的电压门控钠通道密度最大,产生动作电位的阈值最低,即兴奋性最高,故动作电位常常由此首先产生。轴突离开细胞体一段距离后才获得髓鞘,成为神经纤维。
欢迎分享,转载请注明来源:优选云