数学里上凹,下凹,上凸,下凸统称为曲线的凸性,其是指在平面坐标系里的图形样式:
1、开口向上的曲线,称为上凹,或称为下凸,形状为 ∪;
2、开口向下的曲线,称为下凹,或称为上凸,形状为 ∩;
3、所以上凹,下凹,上凸,下凸四种,实际上可归类为上凸,下凸两种情况:
(1)从切线角度讲,下凸弧上过任一点的切线都在曲线弧之下,而上凸弧上过任一点的切线都在曲线弧之上。
(2)从割线角度讲,如果连续曲线y=f(x)在区间(a,b)对应的曲线弧上任意两点的割线线段都在该两点间的曲线弧之上,则称该段曲线弧是下凸的,并称函数y=f(x)在区间(a,b)上是下凸的(或上凹的,即曲线开口向上)。反之,则是上凸的。
(3)从导数角度讲,设y=f(x)在(a,b)内具有二阶导数,如果在(a,b)内f''(x)>o,则y=f(x)在(a,b)内为下凸;如果在(a,b)内f''(x)<o,则y=f(x)在(a,b)内为上凸。
开口向上的曲线,称为上凹,或称为下凸,形状为∪。
开口向下的曲线,称为下凹,或称为上凸,形状为∩。
数学里上凹,下凹,上凸,下凸统称为曲线的凸性,是在平面坐标系里的图形样式。实际上可归类为上凸,下凸两种情况。从切线角度讲,下凸弧上过任一点的切线都在曲线弧之下,而上凸弧上过任一点的切线都在曲线弧之上。
扩展资料
意义
在研究函数图形的变化时,仅仅研究单调性并不能完全反映它的变化规律。
函数虽然在区间[a,b]内单调递增,但却有不同的弯曲状况,从左到右,曲线先是向下凹,通过P点后改变了弯曲方向,曲线向上凸。
因此,在研究函数的图形时,除了研究其单调性,对于它的弯曲方向及弯曲方向的改变点的研究也是很有必要的。
曲线向下凹时,弯曲的弧段位于这弧段上任意一点的切线的上方,曲线向上凸时,弯曲的弧段位于这弧段上任意一点的切线的下方。
欢迎分享,转载请注明来源:优选云