糖代谢的合成分解

糖代谢的合成分解,第1张

糖原是体内糖的储存形式,主要以肝糖原、肌糖原形式存在。肝糖原的合成与分解主要是为了维持血糖浓度的相对恒定;肌糖原是肌肉糖酵解的主要来源。糖原由许多葡萄糖通过α-1,4-糖苷键(直链)及α-1,6-糖苷键(分支)相连而成的带有分支的多糖(图6-11),存在于细胞质中。

糖原合成(glycogenesis)是由葡萄糖合成糖原的过程。反之,糖原分解(glycogenolysis)则是指肝糖原分解为葡萄糖的过程。糖原合成及分解反应都是从糖原分支的非还原性末端开始,分别由两组不同的酶催化。 糖原合成首先以葡萄糖为原料合成尿苷二磷酸葡萄糖(uridine diphosphate glucose,UDP-Glc),在限速酶糖原合酶(glycogen synthase)的作用下,将UDP-Glc转给肝、肌肉中的糖原蛋白(glycogenin)上,延长糖链合成糖原。其次糖链在分支酶的作用下再分支合成多支的糖原。反应可以分为二个阶段:

第一阶段:糖链的延长

游离的葡萄糖不能直接合成糖原,它必须先磷酸化为G-6-P再转变为G-1-P,后者与UTP作用形成UDP-Glc及焦磷酸(PPi)。UDP-Glc是糖原合成的底物,葡萄糖残基的供体,称为活性葡萄糖。UDP-Glc在糖原合酶催化下将葡萄糖残基转移到糖原蛋白中糖原的直链分子非还原端残基上,以α-1,4-糖苷键相连延长糖链。

第二阶段:糖链分支

糖原合酶只能延长糖链,不能形成分支。当直链部分不断加长到超过11个葡萄糖残基时,分支酶可将一段糖链(至少含有6个葡萄糖残基)转移到邻近糖链上,以α-1,6-糖苷键相连接,形成新的分支(图6-13),分支以α-1,4-糖苷键继续延长糖链。

糖原蛋白是一个分子质量为37 kDa的蛋白质,它既是糖链延长的引物,又具有酶活性,在糖原合成起始中具有重要作用(图6-15)。①UDP-Glc提供的一个葡萄糖残基和糖原蛋白上的酪氨酸残基进行共价连接,这一步是由糖原蛋白本身具有的糖基转移酶(glucosyltransferase)所催化的。②结合了一个葡萄糖残基的糖原蛋白和糖原合酶一起三者形成一个牢固的复合物,以后的反应都在这个复合物上进行。③UDP-Glc在糖基转移酶催化下提供葡萄糖残基,糖原合酶催化合成,以α-1,4-糖苷键延长,形成7个葡萄糖残基以上的短链。④随着糖链的延长,糖原合酶最终和糖原蛋白分离。⑤在糖原合酶和分支酶的联合作用下完成糖原的合成,糖原蛋白仍然保留在糖原分子中。

糖原合酶是糖原合成的限速酶,是糖原合成的调节点。糖原蛋白每增加一个葡萄糖残基要消耗2分子ATP(葡萄糖磷酸化以及生成UDP-Glc)。 在限速酶糖原磷酸化酶(glycogen phosphorylase)的催化下,糖原从分支的非还原端开始,逐个分解以α-1,4-糖苷键连接的葡萄糖残基,形成G-1-P。G-1-P转变为G-6-P后,肝及肾中含有葡萄糖-6-磷酸酶,使G-6-P水解变成游离葡萄糖,释放到血液中,维持血糖浓度的相对恒定。由于肌肉组织中不含葡萄糖-6-磷酸酶,肌糖原分解后不能直接转变为血糖,产生的G-6-P在有氧的条件下被有氧氧化彻底分解,在无氧的条件下糖酵解生成乳酸,后者经血循环运到肝脏进行糖异生,再合成葡萄糖或糖原。

当糖原分子的分支被糖原磷酸化酶作用到距分支点只有4个葡萄糖残基时,糖原磷酸化酶不能再发挥作用。此时脱支酶发挥作用,脱支酶具有转寡糖基酶和α-1,6-葡萄糖苷酶两个酶活性:转寡糖基酶将分支上残留的3个葡萄糖残基转移到另外分支的末端糖基上,并进行α-1,4-糖苷键连接;而残留的最后一个葡萄糖残基则通过α-1,6-葡萄糖苷酶水解,生成游离的葡萄糖;分支去除后,糖原磷酸化酶继续催化分解葡萄糖残基形成G-1-P。 在肌肉中糖原的合成与分解主要是为肌肉提供ATP;在肝脏,糖原合成、糖原分解主要是为了维持血糖浓度的相对恒定。它们的作用受到肾上腺素、胰高血糖素、胰岛素等激素的影响:肾上腺素主要作用于肌肉;胰高血糖素、胰岛素主要调节肝脏中糖原合成和分解的平衡。糖原合酶与糖原磷酸化酶分别是糖原合成和糖原分解的限速酶,糖原磷酸化酶和糖原合酶的活性不会同时被激活或同时抑制,它们可以通过别构调节和共价修饰调节两种方式进行活性的调节。

(一) 糖原磷酸化酶活性调节

糖原磷酸化酶以a、b两种形式存在。在糖原磷酸化酶激酶及ATP存在下,在糖原磷酸化酶b的丝氨酸残基进行磷酸化修饰,使无活性的糖原磷酸化酶b转变成有活性的糖原磷酸化酶a。糖原磷酸化酶a可经磷蛋白磷酸酶作用使其丝氨酸残基脱去磷酸,成为无活性的糖原磷酸化酶b。

在肌肉剧烈运动时,糖原磷酸化酶的活性是受到肾上腺素的调节。肾上腺素通过信号转导系统使cAMP的浓度提高,激活A激酶使无活性的糖原磷酸化酶激酶b磷酸化成为有活性的糖原磷酸化酶激酶a,糖原磷酸化酶激酶a进一步使无活性的糖原磷酸化酶b成为有活性的糖原磷酸化酶a,促进糖原分解,产生能量。

当肌肉剧烈运动时,肌糖原分解增加,这过程也涉及是二个别构调节机制。一个是Ca2+的别构调节:Ca2+是肌肉运动的信号,它结合并别构糖原磷酸化酶激酶b使其具有活性,促进无活性的糖原磷酸化酶b转变为有活性的糖原磷酸化酶a。另一个是AMP和ATP的别构调节:AMP在剧烈运动的肌肉中积聚,别构激活糖原磷酸化酶;当ATP足够时,ATP和别构位点结合,使糖原磷酸化酶失活。

在肝脏中,糖原磷酸化酶的活性调节主要受胰高血糖素调节,当血糖浓度降低到一定程度,通过胰高血糖素形成cAMP,激活A激酶使磷酸化酶激酶b成为磷酸化酶激酶a,催化无活性的磷酸化酶b转变为有活性的磷酸化酶a,促使肝糖原分解成葡萄糖释放到血液中,达到升血糖目的。在肝脏中糖原磷酸化酶的活性也存在着别构调节机制。当血糖浓度恢复正常,葡萄糖进入肝细胞并和糖原磷酸化酶a的别构位点结合,使糖原磷酸化酶a上磷酸化的丝氨酸残基暴露给糖原磷酸化酶a磷酸酶,糖原磷酸化酶a脱磷酸成无活性的糖原磷酸化酶b,此时葡萄糖是别构剂。

(二)糖原合成酶活性的调节

糖原合酶也分为a、b两种形式。糖原合酶a具有活性。糖原合酶a被磷酸化转变成无活性的糖原合酶b。在磷蛋白磷酸酶的作用下,无活性的糖原酶b脱磷酸转变为有活性的糖原合酶a。糖原磷酸化酶和糖原合酶的活性在磷酸化与去磷酸化作用下相互调节,一个酶被激活,另一个酶活性被抑制,二个酶不会同时被激活或同时抑制。

糖原磷酸化酶激酶a、糖原磷酸化酶a和糖原合酶b,它们的脱磷酸均由磷蛋白磷酸酶催化。磷蛋白磷酸酶可与磷蛋白磷酸酶抑制物结合而失去活性,以保证糖原磷酸化酶激酶a、糖原磷酸化酶a和糖原合酶b维持磷酸化的状态。只有磷酸化的磷蛋白磷酸酶抑制物才能和磷蛋白磷酸酶结合而使磷蛋白磷酸酶失去活性。因此cAMP激活A激酶,不仅促进糖原磷酸化酶激酶b磷酸化成为糖原磷酸化酶激酶a、磷酸化酶b磷酸化成为磷酸化酶a,又通过磷蛋白磷酸酶抑制剂的磷酸化,达到抑制磷蛋白磷酸酶对糖原磷酸化酶激酶a、糖原磷酸化酶a和糖原合酶b脱磷酸化的目的,最终促进糖原分解,抑制糖原合成。

中酶的磷酸化与去磷酸化使酶活性相应改变,构成一组连续的、级联式(cascade)的酶促反应过程,各级反应不仅都可被调节,而且有放大效应。这种调节机制有利于机体针对不同生理状况作出反应。 糖异生反应过程基本上是糖酵解反应的逆过程。由于糖酵解过程中由己糖激

酶、6-磷酸果糖激酶1及丙酮酸激酶催化的三个反应释放了大量的能量,构成难以逆行的能障, 因此这三个反应是不可逆的。这三个反应可以分别通过相应的、特殊的酶催化,使反应逆行(图6-19),完成糖异生反应过程。

(一)丙酮酸转变为磷酸烯醇式丙酮酸

丙酮酸生成磷酸烯醇式丙酮酸的反应包括丙酮酸羧化酶和磷酸烯醇式丙酮酸羧激酶催化的两步反应,构成一条所谓“丙酮酸羧化支路”使反应进行。这个反应是糖酵解过程中丙酮酸激酶催化的磷酸烯醇式丙酮酸生成丙酮酸的逆过程。

⒈ 丙酮酸羧化生成草酰乙酸

此反应由丙酮酸羧化酶催化,辅酶是生物素, ATP、Mg2+(Mn2+)参与羧化反应, CO2通过生物素使丙酮酸羧化生成草酰乙酸。此酶存在于线粒体中,故丙酮酸必须进入线粒体才能被羧化为草酰乙酸,这也是体内草酰乙酸的重要来源之一。

2.草酰乙酸脱羧生成磷酸烯醇式丙酮酸(PEP)

此反应由磷酸烯醇式丙酮酸羧激酶催化,由GTP提供能量,释放CO2。

磷酸烯醇式丙酮酸羧激酶在人体的线粒体及胞液中均有存在。存在于线粒体中的磷酸烯醇式丙酮酸羧激酶,可直接催化草酰乙酸脱羧生成PEP,PEP从线粒体转运到细胞质,通过糖酵解逆行过程生成1,6-二磷酸果糖。存在于细胞质中的磷酸烯醇式丙酮酸羧激酶,首先要使草酰乙酸从线粒体转运到细胞质中:由于草酰乙酸不能自由进出线粒体内膜,因此草酰乙酸先要在线粒体内还原生成苹果酸或经转氨基作用生成天冬氨酸;苹果酸、天冬氨酸都能自由进出线粒体内膜,可从线粒体到达细胞质;在细胞质中苹果酸可脱氢氧化、天冬氨酸可再经转氨基作用生成草酰乙酸,完成了将草酰乙酸从线粒体转运到细胞质的过程。然后,转运到细胞质中的草酰乙酸可在磷酸烯醇式丙酮酸羧激酶催化下脱羧生成PEP。

(二)1,6-二磷酸果糖转变为6-磷酸果糖

此反应由1,6-二磷酸果糖酶1催化进行。这个反应是糖酵解过程中1,6-二磷酸果糖酶1催化6-磷酸果糖生成1,6-二磷酸果糖的逆过程。

(三)6-磷酸葡萄糖转变为葡萄糖

此反应由葡萄糖-6-磷酸酶催化进行。这个反应是糖酵解过程中己糖激酶催

化葡萄糖生成6-磷酸葡萄糖的逆过程。 ⒈糖异生最重要的生理意义是在空腹或饥饿情况下维持血糖浓度的相对恒定

⒉乳酸再利用:

乳酸大部分是由肌肉和红细胞中糖酵解生成的,经血液运输到肝脏或肾脏,经糖异生再形成葡萄糖,后者可经血液运输回到各组织中继续氧化提供能量。这个过程称为是乳酸循环或Cori循环(lactate cycle or Cori cycle)。在安静状态下产生乳酸的量甚少,此途径意义不大。但在某些生理或病理情况下,如剧烈运动时,肌糖原酵解产生大量乳酸,大部分可经血液运到肝脏,通过糖异生作用合成肝糖原或葡萄糖以补充血糖,而血糖又可供肌肉利用。乳酸循环可避免损失乳酸以及防止因乳酸堆积引起的酸中毒。

⒊糖异生促进肾脏排H+、缓解酸中毒

酸中毒时H+能激活肾小管上皮细胞中的磷酸烯醇式丙酮酸羧激酶,促进糖异生进行。由于三羧酸循环中间代谢物进行糖异生,造成α-酮戊二酸含量降低,促使谷氨酸和谷氨酰胺的脱氨生成的α-酮戊二酸补充三羧酸循环,产生的氨则分泌进入肾小管,与原尿中H+结合成NH4+,对H+过多起到缓冲作用,可缓解酸中毒。 糖异生途径中四个关键酶催化的反应是糖异生的主要调节点。糖异生与糖酵解是两条相同但方向相反的代谢途径,因此它们必须是互为调节的,两条代谢途径中关键酶的激活或抑制要互相配合:当糖供应充分时,糖酵解有关的酶活性增高,糖异生有关的酶活性减低;当糖供应不足时,糖酵解有关的酶活性减低,糖异生有关的酶活性增高。体内通过改变酶的合成速度、共价修饰调节和别构调节来调控这两条途径中关键酶的活性,以达到最佳生理效应。

⒈ 诱导、抑制关键酶的合成

当血糖浓度升高,一方面可导致胰岛素分泌增加,成为增加糖酵解关键酶合成的诱导因素;另一方面可抑制糖皮质激素和胰高血糖素诱导产生糖异生的关键酶。

⒉ 关键酶的共价修饰调节

当血糖浓度的降低,可导致胰高血糖素、少量的肾上腺素产生,通过cAMP达到抑制糖酵解、增加糖异生的目的。cAMP浓度的增加可使A激酶对丙酮酸酸激酶进行磷酸化,磷酸化后的丙酮酸激酶活性降低,糖酵解过程抑制。胰高血糖素和肾上腺素对6-磷酸果糖激酶2也有共价修饰作用,根据糖供应的情况产生相应的2,6-二磷酸果糖的量,进而影响6-磷酸果糖激酶1的活性,达到调节糖酵解的目的。

⒊ 关键酶的别构调节

⑴乙酰CoA作为别构剂的作用:激活糖异生的丙酮酸羧化酶,抑制糖有氧氧化中的丙酮酸脱氢酶复合体的活性,促进糖异生作用。当细胞能量足够时,三羧酸循环被抑制、乙酰CoA堆积,进而抑制丙酮酸脱氢酶复合体的活性,减缓丙酮酸生成乙酰CoA;与此同时丙酮酸羧化酶激活,增加糖异生过程,将多余的丙酮酸生成葡萄糖。

⑵AMP、ATP作为别构剂的作用:AMP是糖异生的1,6-二磷酸果糖酶1的别构抑制剂,是糖酵解中6-磷酸果糖激酶1的别构激活剂。ATP、柠檬酸是6-磷酸果糖激酶1的别构抑制剂。这二个酶相互协调共同调节糖异生、糖酵解。肝细胞内ATP/ADP比值增加时,糖异生加强而糖酵解被抑制,反之,当ATP/ADP比值下降时,糖酵解加速,而糖异生被抑制。

⑶2,6-二磷酸果糖作为别构剂的作用:2,6-二磷酸果糖在糖酵解、糖异生的相互调节中起着重要作用。2,6-二磷酸果糖是6-磷酸果糖激酶1最强烈的别构激活剂,同时也是1,6-二磷酸果糖酶1的别构抑制剂。在糖供应充分时,2,6-二磷酸果糖浓度增高激活6-磷酸果糖激酶1,抑制1,6-二磷酸果糖酶1,促进糖酵解。在糖供应缺乏时 ,2,6二磷酸果糖浓度降低,减低对6-磷酸果糖激酶1的激活、减低对1,6-二磷酸果糖酶1的抑制,糖异生增加。

在糖酵解和糖异生中都出现的酶是什么酶6-磷酸果糖激酶-1>丙酮酸激酶>己糖激酶ATP/AMP比值的高低对6-磷酸果糖激酶-1活性的调节有重要意义。当ATP浓度较高时,6-磷酸果糖激酶-1几乎无活性,糖酵解作用减弱;当AMP累积,ATP较少时,酶活性恢复,糖酵解作用加强;此外,H+也可抑制6-磷酸果糖激酶-1的活性,这样可防止肌肉中形成过量的乳酸。糖异生途径和糖酵解是基本上是可逆反应但是有3个步骤是不可逆·,在糖异生途径之中须由另外的反应和酶代替.这三步反应是:① 丙酮酸转变成磷酸烯醇式丙酮酸,有2个反应组成,分别由丙酮酸所化酶和磷酸烯醇式丙酮酸羧激酶催化;② 1,6-双磷酸果糖转变成6-磷酸果糖,由磷酸已糖异构酶化;③ 6-磷酸葡萄糖水解为葡萄糖,由葡萄糖-6-磷酸酶催化.

糖异生作用基本上可以看成是糖酵解的逆转。但是,在糖酵解途径中有三步反应是不可逆的,即由己糖激酶、磷酸果糖激酶,丙酮酸激酶催化的反应是不可逆的。然而这三步反应仍可以通过不同酶催化“逆转”。

但反应过程并非原反应过程的逆向进行。下面以反应式来表示这种“逆转”,实线为糖酵解过程,虚线为糖异生过程。

从上面反应看出,丙酮酸绕过不可逆的丙酮酸激酶经丙酮酸羧化酶催化形成草酰乙酸,再经PEP羧激酶催化生成PEP,从而实现糖酵解最后一个不可逆酶的绕过。

第二步是果糖-1,6-二磷酸酶催化果糖-1,6-二磷酸水解为果糖-6-磷酸。糖酵解的第一个不可逆反应由葡萄糖-6-磷酸酶催化G-6-P的“逆转”,这样最终实现了糖的异生。

扩展资料

糖异生的重要作用在于维持体内正常血糖浓度。特别是在体内糖的来源不足时,利用非糖物质转化成糖,以保证血糖的相对稳定。

另外,在剧烈运动时,肌糖酵解产生大量乳酸,乳酸在肝脏中大部分可经糖异生途径转化成糖。这对防止由于乳酸过多引起的酸中毒及更新肝糖原都有一定意义。在反刍动物的消化道中,经细菌作用能将纤维素转变成丙酸,后者在体内也可转变成糖供机体使用。

参考资料来源:百度百科-糖异生作用


欢迎分享,转载请注明来源:优选云

原文地址:https://54852.com/hy/1026288.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-08-10
下一篇2023-08-10

随机推荐

  • 圣罗兰口红怎么分辨是不是正品

    首先,你可以从包装上辨别真伪。区别在于包装盒上的文字,其中最上面的英文字母“ROUGEPURCOUTURE”不是特别粗,只是比最下面的字母粗一点点。而且正品包装盒上的字体整体纤细舒适,假货的粗糙甚至会带一点污迹。下图是真左假右。看外包装底部

    2023-12-14
    32900
  • 我现在 想买化妆品。请问诗莱雅的化妆品怎么样呢

    你 脸上的 肉豆豆,我也有,我问过他们说清洁布到位,我建议你 去买清洁好一点的洗面奶和保湿补水效果好,我现在用的日本进口十二单的东东,上次无意逛街被拉去试的,用了之后感觉还不错,就买了个洗面奶和水,用起来很水润,一点都不油腻,我还准备把乳用

    2023-12-14
    32400
  • 美肤宝花养素颜系列怎么样

    美肤宝花养素颜水质地滑润,上脸触感水润如丝,滋润保湿的同时还可以软化肌肤角质,让肌肤恢复白净透亮,细腻弹滑的质感。美肤宝花养素颜精华液质地丝滑质地,上脸易涂抹易推开,不会搓泥,吸收快,可以有效改善肌肤循环,增强肌肤活力,明亮素颜美肌指日可待

    2023-12-14
    21700
  • 雅诗兰黛面霜有几款 雅诗兰黛面霜系列

    雅诗兰黛是国际上很有名的一个护肤品牌,雅诗兰黛旗下的护肤产品一直备受大家的喜爱,雅诗兰黛面霜款式非常多,每一款都有不同功效,那么雅诗兰黛面霜有几款?雅诗兰黛面霜系列。雅诗兰黛面霜有几款雅诗兰黛共分为七个系列,除了明星小棕瓶之外,其他

    2023-12-14
    31200
  • 百雀羚帧颜肌底精华液和帧颜修护精华液哪个好用

    百雀羚帧颜肌底精华液更好用。1、百雀羚帧颜肌底精华液宝藏国货真的很让人惊喜,轻透肌底液质地,沁润呵护基底,而帧颜修护精华液清爽不油腻,涂抹在面部按摩后非常舒适,吸收快,所以百雀羚帧颜肌底精华液更好用。2、百雀羚帧颜肌底精华液价位不贵温和不刺

    2023-12-14
    30200
  • 珀莱雅的护肤品好吗

    不错。从价格到用后效果和感受上比,更倾向用后者,信价比比较高。日常基础护肤品,如化妆水、乳液、面霜等等。1、珀莱雅zd的护肤顺序是先从化妆水这类质地稀薄的护肤品开始轻拍脸上,调整肌肤的酸碱值,后续浓度高的护肤品就更好吸收。2、眼霜在精华之后

    2023-12-14
    28100
  • 恒锁姝颜(武汉)化妆品有限公司怎么样

    恒锁姝颜(武汉)化妆品有限公司是2018-01-17在湖北省武汉市武昌区注册成立的有限责任公司(自然人独资),注册地址位于武昌区松竹路与烟霞路交叉处武汉中央文化区K6K7地块一期K6-3栋4层2号。恒锁姝颜(武汉)化妆品有限公司的统一社会信

    2023-12-14
    29300
  • 化妆品研发课程

    Ⅰ 现在学化妆学什么课程好学什么课程好主要取决于发展方向,根据你的兴趣和性格特点和发展方向选择。学化妆有个人化妆课程、新娘化妆课程、明星时尚类化妆课程、剧组影视类化妆课程等。不管学哪个方向各有千秋:新娘化妆课程主要是基

    2023-12-13
    19600
  • 化妆品商城品牌广告语

    化妆品商城品牌广告语3篇化妆品商城品牌广告语1“妆”尽世界,升级美丽!“妆”饰你的美丽,网络你美丽的容颜。爱美进商城,美丽带给你,第五美人城,源你年轻梦。爱上第五美人

    2023-12-13
    22400

发表评论

登录后才能评论
保存