
半导体器件(semiconductor device)通常,利用不同的半导体材料、采用不同的工艺和几何结构,已研制出种类繁多、功能用途各异的多种晶体二极体,晶体二极体的频率覆盖范围可从低频、高频、微波、毫米波、红外直至光波。三端器件一 般是有源器件,典型代表是各种电晶体(又称晶体三极体)。电晶体又可以分为双极型电晶体和场效应电晶体两 类。根据用途的不同,电晶体可分为功率电晶体微波电晶体和低噪声电晶体。除了作为放大、振荡、开关用的 一般电晶体外,还有一些特殊用途的电晶体,如光电晶体、磁敏电晶体,场效应感测器等。这些器件既能把一些 环境因素的信息转换为电信号,又有一般电晶体的放大作用得到较大的输出信号。此外,还有一些特殊器件,如单结电晶体可用于产生锯齿波,可控矽可用于各种大电流的控制电路,电荷耦合器件可用作摄橡器件或信息存 储器件等。在通信和雷达等军事装备中,主要靠高灵敏度、低噪声的半导体接收器件接收微弱信号。随着微波 通信技术的迅速发展,微波半导件低噪声器件发展很快,工作频率不断提高,而噪声系数不断下降。微波半导体 器件由于性能优异、体积小、重量轻和功耗低等特性,在防空反导、电子战、C(U3)I等系统中已得到广泛的套用 。
分类 晶体二极体晶体二极体的基本结构是由一块 P型半导体和一块N型半导体结合在一起形成一个 PN结。在PN结的交界面处,由于P型半导体中的空穴和N型半导体中的电子要相互向对方扩散而形成一个具有空间电荷的偶极层。这偶极层阻止了空穴和电子的继续扩散而使PN结达到平衡状态。当PN结的P端(P型半导体那边)接电源的正极而另一端接负极时,空穴和电子都向偶极层流动而使偶极层变薄,电流很快上升。如果把电源的方向反过来接,则空穴和电子都背离偶极层流动而使偶极层变厚,同时电流被限制在一个很小的饱和值内(称反向饱和电流)。因此,PN结具有单向导电性。此外,PN结的偶极层还起一个电容的作用,这电容随着外加电压的变化而变化。在偶极层内部电场很强。当外加反向电压达到一定阈值时,偶极层内部会发生雪崩击穿而使电流突然增加几个数量级。利用PN结的这些特性在各种套用领域内制成的二极体有:整流二极体、检波二极体、变频二极体、变容二极体、开关二极体、稳压二极体(曾讷二极体)、崩越二极体(碰撞雪崩渡越二极体)和俘越二极体(俘获电浆雪崩渡越时间二极体)等。此外,还有利用PN结特殊效应的隧道二极体,以及没有PN结的肖脱基二极体和耿氏二极体等。
双极型电晶体它是由两个PN结构成,其中一个PN结称为发射结,另一个称为集电结。两个结之间的一薄层半导体材料称为基区。接在发射结一端和集电结一端的两个电极分别称为发射极和集电极。接在基区上的电极称为基极。在套用时,发射结处于正向偏置,集电极处于反向偏置。通过发射结的电流使大量的少数载流子注入到基区里,这些少数载流子靠扩散迁移到集电结而形成集电极电流,只有极少量的少数载流子在基区内复合而形成基极电流。集电极电流与基极电流之比称为共发射极电流放大系数?。在共发射极电路中,微小的基极电流变化可以控制很大的集电极电流变化,这就是双极型电晶体的电流放大效应。双极型电晶体可分为NPN型和PNP型两类。
场效应电晶体它依靠一块薄层半导体受横向电场影响而改变其电阻(简称场效应),使具有放大信号的功能。这薄层半导体的两端接两个电极称为源和漏。控制横向电场的电极称为栅。
根据栅的结构,场效应电晶体可以分为三种:
①结型场效应管(用PN结构成栅极)
②MOS场效应管(用金属-氧化物-半导体构成栅极,见金属-绝缘体-半导体系统)
③MES场效应管(用金属与半导体接触构成栅极)其中MOS场效应管使用最广泛。尤其在大规模积体电路的发展中,MOS大规模积体电路具有特殊的优越性。MES场效应管一般用在GaAs微波电晶体上。
在MOS器件的基础上,又发展出一种电荷耦合器件 (CCD),它是以半导体表面附近存储的电荷作为信息,控制表面附近的势阱使电荷在表面附近向某一方向转移。这种器件通常可以用作延迟线和存储器等配上光电二极体列阵,可用作摄像管。
命名方法中国半导体器件型号命名方法
半导体器件型号由五部分(场效应器件、半导体特殊器件、复合管、PIN型管、雷射器件的型号命名只有第三、四、五部分)组成。五个部分意义如下:
第一部分:用数字表示半导体器件有效电极数目。2-二极体、3-三极体
第二部分:用汉语拼音字母表示半导体器件的材料和极性。表示二极体时:A-N型锗材料、B-P型锗材料、C-N型矽材料、D-P型矽材料。表示三极体时:A-PNP型锗材料、B-NPN型锗材料、C-PNP型矽材料、D-NPN型矽材料。
第三部分:用汉语拼音字母表示半导体器件的类型。P-普通管、V-微波管、W-稳压管、C-参量管、Z-整流管、L-整流堆、S-隧道管、N-阻尼管、U-光电器件、K-开关管、X-低频小功率管(F<3MHz,Pc3MHz,Pc<1W)、D-低频大功率管(f1W)、A-高频大功率管(f>3MHz,Pc>1W)、T-半导体晶闸管(可控整流器)、Y-体效应器件、B-雪崩管、J-阶跃恢复管、CS-场效应管、BT-半导体特殊器件、FH-复合管、PIN-PIN型管、JG-雷射器件。
第四部分:用数字表示序号
第五部分:用汉语拼音字母表示规格号
例如:3DG18表示NPN型矽材料高频三极体
日本半导体分立器件型号命名方法
日本生产的半导体分立器件,由五至七部分组成。通常只用到前五个部分,其各部分的符号意义如下:
第一部分:用数字表示器件有效电极数目或类型。0-光电(即光敏)二极体三极体及上述器件的组合管、1-二极体、2三极或具有两个pn结的其他器件、3-具有四个有效电极或具有三个pn结的其他器件、┄┄依此类推。
第二部分:日本电子工业协会JEIA注册标志。S-表示已在日本电子工业协会JEIA注册登记的半导体分立器件。
第三部分:用字母表示器件使用材料极性和类型。A-PNP型高频管、B-PNP型低频管、C-NPN型高频管、D-NPN型低频管、F-P控制极可控矽、G-N控制极可控矽、H-N基极单结电晶体、J-P沟道场效应管、K-N 沟道场效应管、M-双向可控矽。
第四部分:用数字表示在日本电子工业协会JEIA登记的顺序号。两位以上的整数-从"11"开始,表示在日本电子工业协会JEIA登记的顺序号不同公司的性能相同的器件可以使用同一顺序号数字越大,越是产品。
第五部分: 用字母表示同一型号的改进型产品标志。A、B、C、D、E、F表示这一器件是原型号产品的改进产品。
美国半导体分立器件型号命名方法
美国电晶体或其他半导体器件的命名法较混乱。美国电子工业协会半导体分立器件命名方法如下:
第一部分:用符号表示器件用途的类型。JAN-军级、JANTX-特军级、JANTXV-超特军级、JANS-宇航级、(无)-非军用品。
第二部分:用数字表示pn结数目。1-二极体、2=三极体、3-三个pn结器件、n-n个pn结器件。
第三部分:美国电子工业协会(EIA)注册标志。N-该器件已在美国电子工业协会(EIA)注册登记。
第四部分:美国电子工业协会登记顺序号。多位数字-该器件在美国电子工业协会登记的顺序号。
第五部分:用字母表示器件分档。A、B、C、D、┄┄-同一型号器件的不同档别。如:JAN2N3251A表示PNP矽高频小功率开关三极体,JAN-军级、2-三极体、N-EIA 注册标志、3251-EIA登记顺序号、A-2N3251A档。
国际电子联合会半导体器件型号命名方法
德国、法国、义大利、荷兰、比利时等欧洲国家以及匈牙利、罗马尼亚、南斯拉夫、波兰等东欧国家,大都采用国际电子联合会半导体分立器件型号命名方法。这种命名方法由四个基本部分组成,各部分的符号及意义如下:
第一部分:用字母表示器件使用的材料。A-器件使用材料的禁频宽度Eg=0.6~1.0eV 如锗、B-器件使用材料的Eg=1.0~1.3eV 如矽、C-器件使用材料的Eg>1.3eV 如砷化镓、D-器件使用材料的Eg<0.6eV 如锑化铟、E-器件使用复合材料及光电池使用的材料
第二部分:用字母表示器件的类型及主要特征。A-检波开关混频二极体、B-变容二极体、C-低频小功率三极体、D-低频大功率三极体、E-隧道二极体、F-高频小功率三极体、G-复合器件及其他器件、H-磁敏二极体、K-开放磁路中的霍尔元件、L-高频大功率三极体、M-封闭磁路中的霍尔元件、P-光敏器件、Q-发光器件、R-小功率晶闸管、S-小功率开关管、T-大功率晶闸管、U-大功率开关管、X-倍增二极体、Y-整流二极体、Z-稳压二极体。
第三部分:用数字或字母加数字表示登记号。三位数字-代表通用半导体器件的登记序号、一个字母加二位数字-表示专用半导体器件的登记序号。
第四部分:用字母对同一类型号器件进行分档。A、B、C、D、E┄┄-表示同一型号的器件按某一参数进行分档的标志。
除四个基本部分外,有时还加后缀,以区别特性或进一步分类。常见后缀如下:
1、稳压二极体型号的后缀。其后缀的第一部分是一个字母,表示稳定电压值的容许误差范围,字母A、B、C、D、E分别表示容许误差为±1%、±2%、±5%、±10%、±15%其后缀第二部分是数字,表示标称稳定电压的整数数值后缀的第三部分是字母V,代表小数点,字母V之后的数字为稳压管标称稳定电压的小数值。
2、整流二极体后缀是数字,表示器件的最大反向峰值耐压值,单位是伏特。
3、晶闸管型号的后缀也是数字,通常标出最大反向峰值耐压值和最大反向关断电压中数值较小的那个电压值。
如:BDX51-表示NPN矽低频大功率三极体,AF239S-表示PNP锗高频小功率三极体。
积体电路把晶体二极体、三极体以及电阻电容都制作在同一块矽晶片上,称为积体电路。一块矽晶片上集成的元件数小于 100个的称为小规模积体电路,从 100个元件到1000 个元件的称为中规模积体电路,从1000 个元件到100000 个元件的称为大规模积体电路,100000 个元件以上的称为超大规模积体电路。积体电路是当前发展计算机所必需的基础电子器件。许多工业先进国家都十分重视积体电路工业的发展。积体电路的集成度以每年增加一倍的速度在增长。每个晶片上集成256千位的MOS随机存储器已研制成功,正在向1兆位 MOS随机存储器探索。
光电器件 光电探测器光电探测器的功能是把微弱的光信号转换成电信号,然后经过放大器将电信号放大,从而达到检测光信号的目的。光敏电阻是最早发展的一种光电探测器。它利用了半导体受光照后电阻变小的效应。此外,光电二极体、光电池都可以用作光电探测元件。十分微弱的光信号,可以用雪崩光电二极体来探测。它是把一个PN结偏置在接近雪崩的偏压下,微弱光信号所激发的少量载流子通过接近雪崩的强场区,由于碰撞电离而数量倍增,因而得到一个较大的电信号。除了光电探测器外,还有与它类似的用半导体制成的粒子探测器。
半导体发光二极体半导体发光二极体的结构是一个PN结,它正向通电流时,注入的少数载流子靠复合而发光。它可以发出绿光、黄光、红光和红外线等。所用的材料有 GaP、GaAs、GaAs1-xPx、Ga1-xAlxAs、In1-xGaxAs1-yPy等。
半导体雷射器如果使高效率的半导体发光管的发光区处在一个光学谐振腔内,则可以得到雷射输出。这种器件称为半导体雷射器或注入式雷射器。最早的半导体雷射器所用的PN结是同质结,以后采用双异质结结构。双异质结雷射器的优点在于它可以使注入的少数载流子被限制在很薄的一层有源区内复合发光,同时由双异质结结构组成的光导管又可以使产生的光子也被限制在这层有源区内。因此双异质结雷射器有较低的阈值电流密度,可以在室温下连续工作。
光电池当光线投射到一个PN结上时,由光激发的电子空穴对受到PN结附近的内在电场的作用而向相反方向分离,因此在PN结两端产生一个电动势,这就成为一个光电池。把日光转换成电能的日光电池很受人们重视。最先套用的日光电池都是用矽单晶制造的,成本太高,不能大量推广使用。国际上都在寻找成本低的日光电池,用的材料有多晶矽和无定形矽等。
其它利用半导体的其他特性做成的器件还有热敏电阻、霍耳器件、压敏元件、气敏电晶体和表面波器件等。
未来发展今年是摩尔法则(Moore'slaw)问世50周年,这一法则的诞生是半导体技术发展史上的一个里程碑。
这50年里,摩尔法则成为了信息技术发展的指路明灯。计算机从神秘不可近的庞然大物变成多数人都不可或缺的工具,信息技术由实验室进入无数个普通家庭,网际网路将全世界联系起来,多媒体视听设备丰富著每个人的生活。这一法则决定了信息技术的变化在加速,产品的变化也越来越快。人们已看到,技术与产品的创新大致按照它的节奏,超前者多数成为先锋,而落后者容易被淘汰。
这一切背后的动力都是半导体晶片。如果按照旧有方式将电晶体、电阻和电容分别安装在电路板上,那么不仅个人电脑和移动通信不会出现,连基因组研究、计算机辅助设计和制造等新科技更不可能问世。有关专家指出,摩尔法则已不仅仅是针对晶片技术的法则不久的将来,它有可能扩展到无线技术、光学技术、感测器技术等领域,成为人们在未知领域探索和创新的指导思想。
毫无疑问,摩尔法则对整个世界意义深远。不过,随着电晶体电路逐渐接近性能极限,这一法则将会走到尽头。摩尔法则何时失效?专家们对此众说纷纭。早在1995年在芝加哥举行信息技术国际研讨会上,美国科学家和工程师杰克·基尔比表示,5纳米处理器的出现或将终结摩尔法则。中国科学家和未来学家周海中在此次研讨会上预言,由于纳米技术的快速发展,30年后摩尔法则很可能就会失效。2012年,日裔美籍理论物理学家加来道雄在接受智囊网站采访时称,"在10年左右的时间内,我们将看到摩尔法则崩溃。"前不久,摩尔本人认为这一法则到2020年的时候就会黯然失色。一些专家指出,即使摩尔法则寿终正寝,信息技术前进的步伐也不会变慢。
图书信息书 名: 半导体器件
作 者:布伦南高建军刘新宇
出版社:机械工业出版社
出版时间: 2010年05月
ISBN: 9787111298366
定价: 36元
内容简介《半导体器件:计算和电信中的套用》从半导体基础开始,介绍了电信和计算产业中半导体器件的发展现状,在器件方面为电子工程提供了坚实的基础。内容涵盖未来计算硬体和射频功率放大器的实现方法,阐述了计算和电信的发展趋势和系统要求对半导体器件的选择、设计及工作特性的影响。
《半导体器件:计算和电信中的套用》首先讨论了半导体的基本特性接着介绍了基本的场效应器件MODFET和M0SFET,以及器件尺寸不断缩小所带来的短沟道效应和面临的挑战最后讨论了光波和无线电信系统中半导体器件的结构、特性及其工作条件。
作者简介Kevin F Brennan曾获得美国国家科学基金会的青年科学家奖。2002年被乔治亚理工大学ECE学院任命为杰出教授,同年还获得特别贡献奖,以表彰他对研究生教育所作出的贡献。2003年,他获得乔治亚理工大学教职会员最高荣誉--杰出教授奖。他还是IEEE电子器件学会杰出讲师。
图书目录译者序
前言
第1章 半导体基础
1.1 半导体的定义
1.2 平衡载流子浓度与本征材料
1.3 杂质半导体材料
思考题
第2章 载流子的运动
2.1 载流子的漂移运动与扩散运动
2.2 产生-复合
2.3 连续性方程及其解
思考题
第3章 结
3.1 处于平衡状态的pn结
3.2 不同偏压下的同质pn结
3.3 理想二极体行为的偏离
3.4 载流子的注入、拉出、电荷控制分析及电容
3.5 肖特基势垒
思考题
第4章 双极结型电晶体
4.1 BJT工作原理
4.2 BJT的二阶效应
4.2.1 基区漂移
4.2.2 基区宽度调制/Early效应
4.2.3 雪崩击穿
4.3 BJT的高频特性
思考题
第5章结型场效应电晶体和金属半导体场效应电晶体
5.1 JFE
容易使用的4200-SCS型半导体特性分析系统用于实验室级的器件直流参数测试、实时绘图与分析,具有高精度和亚fA级的分辨率。它提供了最先进的系统集成能力,包括完整的嵌入式PC机,Windows *** 作系统与大容量存储器。其自动记录、点击式接口加速并简化了获取数据的过程,这样用户可以更快地开始分析测试结果。其它一些特征使得应力测量功能能够满足各种可靠性测试的需求。DCT2000半导体功率器件静态参数测试仪系统能测试很多电子元器件的静态直流参数(如击穿电压V(BR)CES/V(BR)DSs、漏电流ICEs/lGEs/IGSs/lDSs、阈值电压/VGE(th)、开启电压/VCE(on)、跨导/Gfe/Gfs、压降/Vf、导通内阻Rds(on))。
测试种类覆盖7 大类别26分类,包括“二极管类”“三极管类(如BJT、MOSFET、IGBT)”“保护类器件”“稳压集成类”“继电器类”“光耦类”“传感监测类”等品类的繁多的电子元器件。
高压源标配1400V(选配2KV),高流源标配100A(选配40A,200A,500A)
控制极/栅极电压40V,栅极电流10mA
分辨率最高至1mV / 1nA,精度最高可至0.5%
DCT2000半导体功率器件静态参数测试仪系统适用于功率器件测试还可测试“结电容”,支持“脉冲式一键加热”和“分选机连接”
第一部分:规格&环境
1.1、 产品信息
产品型号:DCT2000
产品名称:半导体功率器件静态参数测试仪系统
1.2、 物理规格
主机尺寸:深660*宽430*高210(mm)
主机重量:<35kg
1.3、 电气环境
主机功耗:<300W
海拔高度:海拔不超过4000m;
环境要求:-20℃~60℃(储存)、5℃~50℃(工作);
相对湿度:20%RH~75%RH (无凝露,湿球温度计温度 45℃以下);
大气压力:86Kpa~106Kpa;
防护条件:无较大灰尘,腐蚀或爆炸性气体,导电粉尘等;
电网要求:AC220V、±10%、50Hz±1Hz;
工作时间:连续;
第二部分:应用场景和产品特点
一、应用场景
1、 测试分析 (功率器件研发设计阶段的初始测试,主要功能为曲线追踪仪)
2、 失效分析 (对失效器件进行测试分析,查找失效机理。以便于对电子整机的整体设计和使用过程提出改善方案)
3、 选型配对 (在器件焊接至电路板之前进行全部测试,将测试数据比较一致的器件进行分类配对)
4、 来料检验 (研究所及电子厂的质量部(IQC)对入厂器件进行抽检/全检,把控器件的良品率)
5、 量产测试 (可连接机械手、扫码q、分选机等各类辅助机械设备,实现规模化、自动化测试)
6、 替代进口 (DCT2000半导体功率器件静态参数测试仪系统可替代同级别进口产品)
二、产品特点
1、程控高压源10~1400V,提供2000V选配;
2、程控高流源1uA~100A,提供40A,200A,500A选配;
3、驱动电压10mV~40V
4、控制极电流10uA~10mA;
5、16位ADC,100K/S采样速率;
6、自动识别器件极性NPN/PNP
7、曲线追踪仪,四线开尔文连接保证加载测量的准确
8、通过RS232 接口连接校准数字表,对系统进行校验
9、不同的封装形式提供对应的夹具和适配器(如TO220、SOP-8、DIP、SOT-23等等)
10、半导体功率器件静态参数测试仪系统能测很多电子元器件(如二极管、三极管、MOSFET、IGBT、可控硅、光耦、继电器等等);
11、半导体功率器件静态参数测试仪系统能实现曲线追踪仪(如击穿电压V(BR)CES/V(BR)DSs、漏电流ICEs/lGEs/IGSs/lDSs、阈值电压/VGE(th)、开启电压/VCE(on)、跨导/Gfe/Gfs、压降/Vf、导通内阻Rds(on) )
12、结电容参数也可以测试,诸如Cka,Ciss,Crss,Coss;
13、脉冲电流自动加热功能,方便高温测试,无需外挂升温装置;
14、Prober 接口、Handler 接口可选(16Bin),连接分选机最高效率1h/9000个;
15、半导体功率器件静态参数测试仪系统在各大电子厂的IQC、实验室有着广泛的应用;
第三部分:产品介绍
3.1、产品介绍
DCT2000半导体功率器件静态参数测试仪系统是由我公司技术团队结合半导体功率器件静态参数测试仪系统的多年经验,以及众多国内外测试系统产品的熟悉了解后,完全自主开发设计的全新一代“半导体功率器件静态参数测试仪系统”。软件及硬件均由团队自主完成。这就决定了这款产品的功能性和可靠性能够得到持续完善和不断的提升。
半导体功率器件静态参数测试仪系统脉冲信号源输出方面,高压源标配1400V(选配2KV),高流源标配100A(选配40A,200A,500A)栅极电压40V,栅极电流10mA,分辨率最高至1mV / 30pA,精度最高可至0.5%。程控软件基于Lab VIEW平台编写,填充式菜单界面。采用带有开尔文感应结构的测试插座,自动补偿由于系统内部及测试电缆长度引起的任何压降,保证测试结果准确可靠。产品可测试 Si, SiC, GaN 材料的 IGBTs, DIODEs, MOSFETs, BJTs, SCRs 等7大类26分类的电子元器件。涵盖电子产品中几乎所有的常见器件。无论电压电流源还是功能配置都有着极强的扩展性。
产品为桌面放置的台式机结构,由测试主机和程控电脑两大部分组成。外挂各类夹具和适配器,还能够通过Prober 接口、Handler 接口可选(16Bin)连接分选机和机械手建立工作站,实现快速批量化测试。通过软件设置可依照被测器件的参数等级进行自动分类存放。能够极好的应对“来料检验”“失效分析”“选型配对”“量产测试”等不同场景。
半导体功率器件静态参数测试仪系统产品的可靠性和测试数据的重复性以及测试效率都有着非常优秀的表现。创新的“点控式夹具”让 *** 作人员在夹具上实现一点即测。 *** 作更简单效率更高。测试数据可保存为EXCEL文本,方便快捷的完成曲线追踪仪。
3.2、人机界面(DCT2000半导体功率器件静态参数测试仪系统)
第四部分:功能配置
4.1、 配置选项
DCT2000半导体功率器件静态参数测试仪系统的功能配置如下
4.2、 适配器选型
DCT2000半导体功率器件静态参数测试仪系统的适配器有如下
4.3、 测试种类及参数
DCT2000半导体功率器件静态参数测试仪系统的测试种类和参数如下
(1)二极管类:二极管 Diode
Kelvin,Vrrm,Irrm,Vf,△Vf,△Vrrm,Cka,Tr(选配);
(2)二极管类:稳压二极管 ZD(Zener Diode)
Kelvin,Vz,lr,Vf,△Vf,△Vz,Roz,lzm,Cka;
(3)二极管类:稳压二极管 ZD(Zener Diode)
Kelvin、Vz、lr、Vf、△Vf、△Vz、Roz、lzm、Cka;
(4)二极管类:三端肖特基二极管SBD(SchottkyBarrierDiode)
Kelvin 、Type_ident 、Pin_test 、Vrrm、Irrm、Vf、△Vf、V_Vrrm、I_Irrm、△Vrrm、Cka、Tr(选配);
(5)二极管类:瞬态二极管 TVS
Kelvin 、Vrrm 、Irrm、Vf、△Vf、△Vrrm 、Cka ;
(6)二极管类:整流桥堆
Kelvin 、Vrrm、Irrm、Ir_ac、Vf、△Vf、△Vrrm 、Cka;
(7)二极管类:三相整流桥堆
Kelvin 、Vrrm 、Irrm、Ir_ac、Vf、△Vf、△Vrrm、Cka;
(8)三极管类:三极管
Kelvin 、Type_ident、Pin_chk 、V(br)cbo 、V(br)ceo 、V(br)ebo 、Icbo、lceo、Iebo、Hfe、Vce(sat)、Vbe(sat)、△Vsat、△Bvceo 、△Bvcbo 、Vbe、lcm、Vsd 、Ccbo 、Cces、Heater、Tr (选配)、Ts(选配)、Value_process;
(9) 三极管类:双向可控硅
Kelvin、Type_ident、Qs_chk、Pin_test、Igt、Vgt、Vtm、Vdrm、Vrrm、Vdrm rrm、Irrm、 Idrm、Irrm_drm、Ih、IL、C_vtm、△Vdrm、△Vrrm、△Vtm;
(10)三极管类:单向可控硅
Kelvin、 Type_ident、 Qs_chk、 Pin test、 lgt、 Vgt、 Vtm、 Vdrm Vrrm、 IH、IL、△Vdrm△Vrrm、Vtm;
(11)三极管类:MOSFET
Kelvin 、Type_ident、Pin_test、VGS(th) 、V(BR)Dss 、Rds(on) 、Bvds_rz、△Bvds、Gfs、Igss、ldss 、Idss zero 、Vds(on)、 Vsd、Ciss、Coss、Crss、Bvgs 、ld_lim 、Heater、Value_proces、△Rds(on) ;
(12)三极管类:双MOSFET
Kelvin、 Pin_chk、Ic_fx_chk、 Type_ident、 Vgs1(th)、 VGs2(th)、 VBR)Dss1、 VBR)Dss2、 Rds1(on)、 Rds2(on)、 Bvds1 rz、 Bvds2_rz、 Gfs1、Gfs2、lgss1、lgss2、Idss1、Idss2、Vsd1、Vsd2、Ciss、Coss、Crss;
(13)三极管类:JFET
Kelvin、VGS(off )、V(BR)Dss、Rds(on)、Bvds_rz、Gfs、lgss、 Idss(off)、 Idss(on)、 vds(on)、 Vsd、Ciss、Crss、Coss;
(14)三极管类:IGBT
Kelvin、VGE(th)、V(BR)CES、Vce(on)、Gfe、lges、 lces、Vf、Ciss、Coss、Crss;
(15)三极管类:三端开关功率驱动器
Kelvin、Vbb(AZ)、 Von(CL)、 Rson、Ibb(off)、Il(lim)、Coss、Fun_pin_volt;
(16)三极管类:七端半桥驱动器
Kelvin、lvs(off)、lvs(on)、Rson_h、Rson_l、lin、Iinh、ls_Volt、Sr_volt;
(17)三极管类:高边功率开关
Kelvin、Vbb(AZ)、Von(CL)、Rson、Ibb(off)、ll(Iim)、Coss、Fun_pin_volt;
(18)保护类:压敏电阻
Kelvin、Vrrm、 Vdrm、Irrm、Idrm、Cka、 △Vr
(19)保护类:单组电压保护器
Kelvin 、Vrrm、Vdrm、Irrm、Idrm、Cka、△Vr;
(20)保护类:双组电压保护器
Kelvin、Vrrm、Vdrm、Irrm、Idrm、Cka、△Vr;
(21)稳压集成类:三端稳压器
Kelvin 、Type_ident 、Treg_ix_chk 、Vout 、Reg_Line、Reg_Load、IB、IB_I、Roz、△IB、VD、ISC、Max_lo、Ro、Ext _Sw、Ic_fx_chk;
(22)稳压集成类:基准IC(TL431)
Kelvin、Vref、△Vref、lref、Imin、loff、Zka、Vka;
(23)稳压集成类:四端稳压
Kelvin、Type_ident、Treg_ix_chk、Vout、Reg_Line、Reg_Load、IB、IB_I、Roz、△lB、VD、Isc、Max_lo、Ro、Ext_Sw、Ic_fx_chk;
(24)稳压集成类:开关稳压集成器
选配;
(25)继电器类:4脚单刀单组、5脚单刀双组、8脚双组双刀、8脚双组四刀、固态继电器
Kelvin、Pin_chk、Dip6_type_ident、Vf、Ir、Vl、Il、Ift、Ron、Ton(选配)、Toff(选配);
(26)光耦类:4脚光耦、6脚光耦、8脚光耦、16脚光耦
Kelvin、Pin_chk、Vf、Ir、Bvceo、Bveco、Iceo、Ctr、Vce(sat)、Tr、Tf;
(27)传感监测类:
电流传感器(ACS712XX系列、CSNR_15XX系列)(选配);
霍尔器件(MT44XX系列、A12XX系列)(选配);
电压监控器(选配);
电压复位IC(选配);
曲线追踪仪
第五部分:性能指标
DCT2000半导体功率器件静态参数测试仪系统的性能指标如下
5. 1 、 电流/电压源 ( VIS ) 自带VI测量单元
(1)加压(FV)
量程±40V分辨率19.5mV精度±1% 设定值±10mV
量程±20V分辨率10mV精度±1% 设定值±5mV
量程±10V分辨率5mV精度±1% 设定值±3mV
量程±5V分辨率2mV精度±1% 设定值±2mV
量程±2V分辨率1mV精度±1% 设定值±2mV
(2)加流(FI)
量程±40A 分辨率19.5mA精度±2% 设定值±20mA
量程±4A 分辨率1.95mA精度±1% 设定值±2mA
量程±400mA分辨率1195uA精度±1% 设定值±200uA
量程±40mA分辨率119.5uA精度±1% 设定值±20uA
量程±4mA分辨率195nA精度±1% 设定值±200nA
量程±400uA分辨率19.5nA精度±1% 设定值±20nA
量程±40uA分辨率1.95nA精度±1% 设定值±2nA
说明:电流大于1.5A自动转为脉冲方式输出,脉宽范围:300us-1000us可调
(3)电流测量(MI)
量程±40A分辨率1.22mA精度±1% 读数值±20mA
量程±4A分辨率122uA精度±0.5% 读数值±2mA
量程±400mA分辨率12.2uA精度±0.5% 读数值±200uA
量程±40mA分辨率1.22uA精度±0.5% 读数值±20uA
量程±4mA分辨率122nA精度±0.5% 读数值±2uA
量程±400uA分辨率12.2nA精度±0.5% 读数值±200nA
量程±40uA分辨率1.22nA精度±1% 读数值±20nA
(4)电压测量(MV)
量程±40V分辨率1.22mV精度±1% 读数值±20mV
量程±20V分辨率122uV 精度±0.5% 读数值±2mV
量程±10V分辨率12.2uV 精度±0.5% 读数值±200uV
量程±5V分辨率1.22uV 精度±0.5% 读数值±20uV
5. 2 、 数据采集部分 ( VM )
16位ADC,100K/S采样速率
(1)电压测量(MV)
量程±2000V分辨率30.5mV精度±0.5%读数值±200mV
量程±1000V分辨率15.3mV精度±0.2%读数值±20mV
量程±100V分辨率1.53mV精度±0.1%读数值±10mV
量程±10V分辨率153uV精度±0.1%读数值±5mV
量程±1V分辨率15.3uV精度±0.1%读数值±2mV
量程±0.1V分辨率1.53uV精度±0.2%读数值±2mV
(2)漏电流测量(MI)
量程±100mA分辨率30uA精度±0.2%读数值±100uA
量程±10mA分辨率3uA精度±0.1%读数值±3uA
量程±1mA分辨率300nA精度±0.1%读数值±300nA
量程±100uA分辨率30nA精度±0.1%读数值±100nA
量程±10uA分辨率3nA精度±0.1%读数值±20nA
量程±1uA 分辨率300pA精度±0.5%读数值±5nA
量程±100nA分辨率30pA精度±0.5%读数值±0.5nA
(3)电容容量测量(MC)
量程6nF分辨率10PF精度±5%读数值±50PF
量程60nF分辨率100PF精度±5%读数值±100PF
5. 3 、 高压源 ( HVS ) (基本)12位DAC
(1)加压(FV)
量程2000V/10mA分辨率30.5mV精度±0.5%设定值±500mV
量程200V/10mA分辨率30.5mV精度±0.2%设定值±50mV
量程40V/50mA分辨率30.5mV精度±0.1%设定值±5mV
(2)加流(FI):
量程10mA分辨率3.81uA 精度±0.5%设定值±10uA
量程2mA分辨率381nA精度±0.5%设定值±2uA
量程200uA分辨率38.1nA精度±0.5%设定值±200nA
量程20uA分辨率3.81nA精度±0.5%设定值±20nA
量程2uA分辨率381pA精度±0.5%设定值±20nA
DCT2000 半导体功率器件静态参数测试仪系统 能测很多电子元器件 ( 如二极管、三极管、MOSFET、IGBT、可控硅、光耦、继电器等等 ) 产品广泛的应用在院所高校、封测厂、电子厂.....
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)