
热载流子就是能够参与导电的载流子~~
也就是导带中电子比平衡时多出来的那部分电子,和价带中比平衡时多出来的那部分空穴~
热载流子注入就是,产生这部分热载流子的过程~
比如价带电子激发进入导带成为导带导电电子,同时价带产生一个导电空穴。这个过程就是热载流子注入~~
我觉得和保险丝差不多吧、室温时电阻率约在10E-5~E欧姆·米之间,温度升高时电阻率指数则减小。半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。 本征半导体:不含杂质且无晶格缺陷的半导体称为本征半导体。在极低温度下,半导体的价带是满带(见能带理论),受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴(图1 )。导带中的电子和价带中的空穴合称电子- 空穴对,均能自由移动,即载流子,它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生半导体
而形成的混合型导电称为本征导电。导带中的电子会落入空穴,电子-空穴对消失,称为复合。复合时释放出的能量变成电磁辐射(发光)或晶格的热振动能量(发热)。在一定温度下,电子- 空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子- 空穴对,载流子密度增加,电阻率减小。无晶格缺陷的纯净半导体的电阻率较大,实际应用不多。
多数载流子与少数载流子
载流子可区分为多数载流子和少数载流子两种。譬如,对于n型半导体,其中的电子就是多数载流子,而空穴是少数载流子。实际上,这不仅是数量多少的差异,而更重要的是它们性质上的不同。例如:
①多数载流子主要由掺杂所提供的,则在室温下,其浓度与温度的关系不大(杂质全电离),而少数载流子主要由本征激发所产生,则随着温度的升高将指数式增加;
②能够注入到半导体中去的载流子,或者能够从半导体中抽出来的载流子,实际上往往是少数载流子,而多数载流子一般是不能注入、也不能抽出的;
③少数载流子能够在局部区域积累或减少,即可形成一定的浓度梯度,而多数载流子在半导体内部难以积累起来,所以多数载流子的浓度一般都不能改变,从而不能形成浓度梯度。也正因为如此,为了维持半导体电中性,所以在注入了少数载流子的同时,也将增加相同数量的多数载流子,并且它们的浓度梯度也相同;
④因为一般只有少数载流子才能注入和抽出,所以半导体中的非平衡载流子一般也就是少数载流子。非平衡少数载流子可由于复合而消失,因此具有一定的寿命时间(从ns到μs),而多数载流子一般就是热平衡载流子,其存在的有效时间也就是所谓介电弛豫时间(非常短,常常可忽略);
⑤少数载流子在浓度梯度驱动下,将一边扩散、一边复合,有一个有效存在的范围——扩散长度(可达nm数量级),而多数载流子的有效存在范围是所谓Debye屏蔽长度(很短);
⑥少数载流子主要是扩散运动,输运电荷的能力决定于其浓度梯度,而多数载流子主要是漂移运动,输运能力主要是决定于多数载流子浓度和电场;等等。
(4)少数载流子的作用:
少数载流子虽然数量少,但是它所产生的电流却不一定小,其主要原因就是它们能够产生很大的浓度梯度,从而可输运很大的电流。例如数百安培工作电流的SCR就是少数载流子工作的器件,所有BJT 就都是少数载流子工作的器件。相反,多数载流子工作的器件,其电流倒不一定很大。
少数载流子能够存储(积累),则对于器件的开关速度有很大影响;而多数载流子的电容效应(势垒电容)往往是影响器件最高工作频率的因素。
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)