
化学传感器主要由两部分组成:识别系统;传导或转换系统。
识别系统反待测物的某一化学参数(常常是浓度)与传导系统连结起来。它主要具有两种功能:选择性地与待测物发生作用,反所测得的化学参数转化成传导系统可以产生响应的信号。分子识别系统是决定整个化学传感器的关键因素。因此,化学传感器研究的主要问题**是分子识别系统的选择以及如何反分子识别系统与合适的传导系统相连续。化学传感器的传导系统接受识别系统响应信号,并通过电极、光纤或质量敏感元件将响应信号以电压、电流或光强度等的变化形式,传送到电子系统进行放大或进行转换输出,终使识别系统的响应信号转变为人们所能用作分析的信号,检测出样品中待测物的量。
化学传感器在环境与卫生监测中的应用
(一)空气检验
1、湿度传感器 湿度是空气环境的一个重要指标,空气的湿度与人体蒸发热之间有着密切关系,高温高湿时,由于人体水分蒸发困难而感到闷热,低温高湿时,人体散热过程剧烈,容易引起感冒和冻伤。人体**适宜的气温是18~22℃,相对湿度为35%~65%RH。 在环境与卫生监测中,常用于湿球温湿度计、手摇湿温度计和通风湿温度计等仪器测定空气湿度。近年来,大量文献报道用传感器测定空气湿度。
2、氧化氮传感器 氧化氮是氮的各种氧化物所组成的气体混合物的总称,常以NOX表示。在氧化氮中,不同形式的氧化氮化学稳定性不同,空气中常风的是化学性质相对稳定的一氧化氮,它们在卫生学上的意义显得较其它形式氧化氮更为重要。在环境分析中,氧化氮一般指一氧化氮
3、硫化氢气体传感器 硫化氢是一种无色、具有特殊腐蛋臭味的可燃气体,具有刺激性和窒息性,对人体有较大危害。目前大多用比色法和气相色谱法测定空气中硫化
4、二氧化硫传感器 二氧化硫是污染空气的主要物质之一,检测空气中二氧化硫尝试是空气检验的一项经常性工作。应用传感器监测二氧化硫。从缩短检测时间到降低检出限,都显示出极大的优越性。
光学薄膜前沿光学薄膜新材料领域的行业门户+媒体+智库技术交流、产业合作、人才交流、企业宣传新媒体、新行业、新材料、新工艺、新商业 Tio2表面超亲水性原理通常情况下,TiO2镀膜表面与水有较大的接触角.但经紫外光照射后,水的接触角减少到5度 下,甚至可达到0度{即水滴完全漫润在Tio2表面).显示非常强的亲水性。停止光照后.表面超亲水性可维持数小时到1周左右.随后慢慢恢复到照射前的疏水状态。再用紫外光照射.叉可表现为超亲水性、采用间歇紫外光照射就可使表面始终保持超亲水状态 。 最初认为TiO2表面的超亲水性起固于表面吸附有机分子的光催化分解反应:TlO2表面本身所具有的化学吸附水是亲水性的.而吸附空气中有机物后使表面疏水.紫外光照射下.表面生成强氧化性的活性羟基,疏水性的有机物通过光催化分解反应被活性羟基氧化分解.从而使表面表现为亲水性状态停止光照,有机物又会慢慢吸附在TiO2表面,回到疏水状态。但进一步的研究表明TiO2表面的超亲水性不同于TiO2的光催化的氧化分解特性.而是TiO2表面本身光诱发的另一种反应。理由如下:①TiO2表面超亲水程度与有机物的光分解效率无关.在一些完全没有光催化活性或光催化活性很低的TiO2单晶或多晶表面均观察到了超亲水特性② 一些金属离子(如铜)掺杂可提高TiO2。的光催化氧化反应.但却降低丁TiO2 表面的超亲水特性③与光催化氧化反应所要求的TiO2表面多孔化、反应面积尽可能大不同.平滑、致密的表面更有利于其超亲水特性④ 紫外光照射后TiO2表面对油也具有很大的亲和性,在正常条件下,油性墟体如乙二醇 十六烷、三油酸甘油酯等与TiO2表面有较大的接触角.但经紫外光照射后,这些液体也会完全浸润在玻璃镀膜表面.即紫外光照射后TiO2表面具有水油双亲和性。目前的研究认为.在光照条件下TiO2表面的超亲水性起固于其表面结掏的变化:在紫外光照射条件下TiO2价带电子被激发到导带.电子和空穴向TiO2表面迁移,在表面生成电子空穴对.电子与Ti4+ 反应.空穴则与表面桥氧离子反应,分别形成正三价的钛离子和氧空位。此时.空气中的水解离吸附在氧空位中.成为化学吸附水{表面羟摹).化学吸附水可进一步吸附空气中的水分,彤成物理吸附层.即在Ti3+缺陷周围形成了高度亲水的徽区.而表面剩余区域仍保持疏水性,这样就在TiO2表面构成了均匀分带的纳米尺寸分离的亲水和亲油徽区,类似于二维的毛细管现象 由于水或油性液滴尺寸远远大于亲水或亲油区面积,故宏观上TiO2表面表现出亲水和亲油特性。滴下的水或油分别被亲水微区或亲油徽区所吸附.从而浸润表面。停止紫外光照射后,化学吸附的羟基被空气中的氧取代,重又回到疏水性状态- 。------------------------------------------------------------------------------------------------光学薄膜前沿|减反射膜、AR+AF薄膜、高反膜、超疏水膜、光伏减反镀膜溶液、光热发电镀膜溶胶、微晶玻璃、屏蔽镀膜玻璃、各类高分子材料减反高透膜,PET减反膜、PC减反AR增透膜、 sol-gel 化学镀膜先创者。加膜层具备疏水或者说防水性能的作用。疏水膜,或防水膜,亦或业内俗称"发水膜", 顾名思义,是说该膜层具备疏水或者说防水性能,意味着水珠在镜片上不易附着。用科学语言表达,也就是镜片表面具备较大的水接触角。可以理解为接触角越大,水珠(注意不是油)越不容易附着在镜片表面。
水接触角较大时发生的d跳现象
当角度达到一定值(150度左右)之后,可以看到类似荷叶上水珠滚动的现象,如以上动图所示,防水性能若达到这个等级,水珠基本是没法附着了,镜片上的脏污也容易被水冲掉,一切都显得非常完美。
究其原因也非常简单,超高接触角(>150°)一般有两个要求:
第一,疏水表面存在表面能极低物质,例如硅氟材料。
第二,疏水表面需要粗糙不平(存在微结构)。
很明显,作为表面非常光滑的镜片,第一点可以实现,但第二点实现是极其困难。 所以市售普通镜片水接触角一般都在110°左右。
专业和学术领域一般使用接触角测试仪来检测接触角,作为消费者没有专业仪器,怎样才能简单测试疏水性能呢?在这里我推荐评估水珠的滚动角相对较为方便,可 *** 作。
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)