
数码管是一种半导体发光器件,其基本单元是发光二极管.数码管按段数分为七段数码管和八段数码管,八段数码管比七段数码管多一个发光二极管单元(多一个小数点显示);按能显示多少个“8”可分为1位、2位、4位等等数码管;按发光二极管单元连接方式分为共阳极数码管和共阴极数码管。
共阳数码管是指将所有发光二极管的阳极接到一起形成公共阳极(COM)的数码管。共阳数码管在应用时应将公共极COM接到+5V,当某一字段发光二极管的阴极为低电平时,相应字段就点亮。当某一字段的阴极为高电平时,相应字段就不亮。
共阴数码管是指将所有发光二极管的阴极接到一起形成公共阴极(COM)的数码管。共阴数码管在应用时应将公共极COM接到地线GND上,当某一字段发光二极管的阳极为高电平时,相应字段就点亮。当某一字段的阳极为低电平时,相应字段就不亮。具体方法如下图所示:
4 位一体数码管,其内部段已连接好,引脚如图所示(数码管的正面朝自己,小数点在下方)。a、b、c、 d、e、f、g、dP 为段引脚,1、2、3、4 分别表示四个数码管的位。
数码管正面朝向自己、小数点在下方;然后上方的引脚从左到右为 1-2-3-4-5-6; 下方的引脚从右到左为 7--8-9-10-11-12。
扩展资料:数码管结构:
数码管由多个发光二极管封装在一起组成“8”字型的器件,引线已在内部连接完成,只需引出它们的各个笔划,公共电极。led数码管常用段数一般为7段有的另加一个小数点,还有一种是类似于3位“+1”型。
位数有半位,1,2,3,4,5,6,8,10位等等,led数码管根据LED的接法不同分为共阴和共阳两类,了解LED的这些特性,对编程是很重要的,因为不同类型的数码管,除了它们的硬件电路有差异外,编程方法也是不同的。
共阴和共阳极数码管的内部电路,发光原理是一样的,只是它们的电源极性不同而已。颜色有红,绿,蓝,黄等几种。led数码管广泛用于仪表,时钟,车站,家电等场合。
一、分析与方案选择
(一)首先要使用74LS192或40192设计一个4进制计数器和一个7进制计数器,然后通过数码管来显示状态。两种进制间的切换可以通过一个单刀双掷开关来实现。其重点和难点在于设计一个4进制计数器和一个7进制计数器。
(二)通过分析74LS192和40192的特点,发现可以使用清零法来设计一个4进制计数器,而7进制则不能直接通过置数或者清零获得。因此我选择采用置数法将74LS192或40192设计的从0到7的8进制计数器改装为从1到7的计数器,然后再通过一个减法器使从1到7的计数器变为从0到6的7进制计数器。而减法器可以使用集成加法器和四个异或门来实现。
二、主要元器件介绍 在本课程设计中,主要用到了74LS192计数器、7447译码器、74LS00与非门、7408与门、74LS136异或门、74283加法器、七段数码显示器和一个单刀双掷开关等元器件。
(一)十进制同步可逆计数器74LS192 功能如下:
1、 异步清零。74LS192的输入端异步清零信号CR,高电平有效。仅当CR=1时,计数器输出清零,与其他控制状态无关。
2、步置数控制。LD非为异步置数控制端,低电平有效。当CR=0,LD非=0时,D1D2D3D4被置数,不受CP控制。
3、 加法计数器,当CR和LD非均无有效输入时,即当CR=0、LD非=1,而减数计数器输入端CPd为高电平,计数脉冲从加法计数端CPu输入时,进行加法计数;当CPd和CPu条件互换时,则进行减法计数。
4、保持。当CR=0、LD非=1(无有效输入),且当CRd=CPu=1时,计数器处于保持状态。
5、进行加计数,并在Q3、Q0均为1、CPu=0时,即在计数状态为1001时,给出一进位信号。进行减计数,当Q3Q2Q1Q0=0000,且CPd=0时,BO非给出一错位信号。这就是十进制的技术规律。
在设计过程中,我主要利用74LS192的计数功能,通过置数法和清零法将其改造为一个4进制计数器和一个7进制计数器。
(二)显示译码器
七段数码显示器
1、七段式数码显示器是目前使用最广泛的一种数码显示器。这种数码显示器有分布在同一平面的七段可发光的线段组成,可用来显示数字、文字、符号。最常用的七段数码显示器有半导体数码管和液晶显示器两种。根据发光二极管的连接形式不同,分为共阴极显示器和共阳极显示器(如图)。
2、共阴极显示器将七个发光二极管的阴极连接在一起,作为公共端。在电路中,将公共端接于低电平,将某段二极管的阳极为高电平时,相应段发光。共阳极的显示方式和共阴极相反。
(三)7447显示译码器
1、七段显示器译码器把输入的BCD码,翻译成驱动七段LED数码管各对应段所需的电平。七段显示译码器7447是一种与共阴极数字显示器配合使用的集成译码器。它用于对十进制数的8421BCD码进行译码,以驱动七段显示器显示十进制数字。
2、其输入为8421BCD码,输出高电平有效,可直接驱动阴极显示器,其功能表和7448的功能表一样如图所示,表中10~15六个状态一般不用。除了译码输入、输出外,7447还有三个辅助控制端,以增强器件功能。
(四)74283加法器
每一位的进位信号送给高位作为输入信号,因此,任一位的加法运算必须在低一位的运算完成之后才能进行,这种进位方式成为串行进位,这种加法器的逻辑电路较为简单。
三、电路设计及计算
四、原理图、仿真图及结果分析、PCB版图
(一)原理图如下所示:
(二)仿真及结果分析:
(三)PCB板排布
1、PCB原理图如下:
2、PCB顶层
3、PCB底层
五、总结
1、在电路仿真时候,觉得原理图是正确的,但运行不出想要的结果,把74LS192换成了同样是计数器的74LS161,结果可以实现4、7进制的转换,知道是这个芯片本身特点,要根据它自身的性质来修改原理图;
2、还有,接地的标号中要把Net选项选为GND,不然在PCB制作中将没有接地这一个选项出现;
3、在PCB板制作时,要对元器件不断调整位置来使排版最佳。
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)