网工专业包括哪些领域?

网工专业包括哪些领域?,第1张

1
物联网领域。网络工程师目前应该重点考虑在物联网领域寻找创业机会,一方面当前5G通信对于物联网领域的发展会起到较大的促进作用,另一方面物联网领域的创业空间也比较大,目前车联网、农业物联网、工业物联网、可穿戴设备等领域都大
2
人工智能领域。当前行业领域对于人工智能的呼声越来越高,工业互联网也把智能化作为一个重要的发展方向,所以在人工智能领域寻找机会也是不错的选择,未来的发展空间也相对比较大。

物联网是一个超级产业,涉及领域非常多,其中又有很多细分技术,而且应用碎片化。2020年,工信部发出了《关于深入推进移动物联网全面发展的通知》,意在推动移动物联网的规模化发展,将物联网碎片化的应用“串”起来。2020年,我国窄带物联网NB-IoT基站数和5G基站数均超过了70万个,移动物联网连接数超过了108亿。2021年,物联网发展将有哪些主要趋势?

NB-IoT仍在爬坡

目前我国NB-IoT的连接数已经超过了12亿,应用创新不断深化,水表、气表等领域应用已经达到了千万级,智慧停车、智慧路灯、智慧物流等百万级的应用领域正在不断涌现。

数据显示,目前中国电信的NB-IoT用户近8000万,NB-IoT连接数全球第一,NB市场占有率行业第一。同时,中国电信还部署了全球物联网领域首个异地多活NB-IoT设备服务平台,可提供亿级以上物联网设备服务,确保端到端业务流程安全。

凭借广覆盖、低功耗、低成本、大连接等特点,NB-IoT已经成为蜂窝物联网领域的主流技术。市场研究机构CounterpointIoT的最新研究数据显示,全球移动物联网连接数将在2025年突破50亿大关,其中NB-IoT的贡献比将接近一半。

2021年,由于NB-IoT的规模应用,芯片的生产成本会进一步下降,即使考虑到近期芯片、元器件缺货,NB-IoT模组整体价格下降的趋势不会改变。随着城市管理智能化的深入,NB-IoT的商业部署只会进一步加快,这将带动提高NB-IoT基站的使用率和新基站的部署。但期望NB-IoT能够在越过1亿连接数后,产生“滚雪球”的产业效应,只是一种乐观估计,主要原因是NB-IoT的应用场景、接入平台还比较分散,从梅特卡夫定律看,NB-IoT目前处于连接数的积累阶段,发展拐点还没有到来。

同时,NB-IoT也面临一些挑战,业内人士认为这些挑战体现在NB-IoT功耗、网络覆盖、商业模式三个方面。

NB-IoT的主要优势之一是低功耗。当前在移动物联网上,普遍采用的还是2G模块,NB-IoT的功耗比2G略好,但在中等频率和高频率实时使用时并没有非常明显的优势,而NB-IoT深度待机模式的功耗和2G掉电模式相差不多。所以以目前NB-IoT模块的实际功耗看,十年的超长待机时间是无法实现的,因此在低功耗一项上,NB-IoT优势并没有预计的大,所以采用NB-IoT的动力不够强。在网络覆盖上,NB-IoT相对于2G/3G/4G网络,其覆盖范围和网络质量还需提高,这也会影响用户的使用信心。在商业模式上,即使运营商开启高频服务功能,每年NB-IoT资费可以提升到35~40元,虽然提升了物联网业务的ARPU值(每用户平均收入),但对于运营商的直接收入贡献还非常有限。

LoRa发力室内场景

目前,在全球范围内已超过1亿个LoRa终端接入节点,中国作为最大的物联网应用市场,占了近半的LoRa节点部署数量,在一些能源、公共安全、智慧楼宇、电力、军事工业等行业得到应用。目前,LoRa技术也正在发力于室内场景应用,这将会成为LoRa最值得期待的市场。

LoRa最早于国外起步,在欧、美等国获得应用,但是应用相对分散。相比国外,国内起步较晚,LoRaWAN 协议的标准化落地情况比较差,但是发展速度快、应用丰富、规模大。作为和NB-IoT相似的技术,LoRa的问题与挑战主要是缺少政策及运营商的大力支持,但因为LoRa有其适用的场景,连接数一直在增长。

LoRa的问题是严重碎片化,这不仅制约LoRa产业的发展,也制约着LoRa企业的发展,且目前的产品丰富度无法满足碎片化应用需求,而且国内已有应用领域的市场增量有限,需要寻找新的应用领域拓展市场。目前电力和家居行业转向通过LoRa技术来解决问题。

从LoRa产业链看,相比于其他多数的无线通信技术,LoRa技术除了技术层面上的优势以外,丰富 健康 的产业链生态也是其优势之一,目前已形成了一个从LoRa芯片、模组、网关、终端、平台、系统集成商到解决方案提供商以及互联网企业、电信运营商等共同参与的格局。

哪些领域机会更多

疫情暴发以来,非接触式的远距离测温仪、巡逻无人机、防疫机器人等物联网产品在疫情防控和复工复产中,得到了广泛运用,2021年,这些应用会进一步升级,并将向在医疗保健中发挥作用发展。Forrester的研究预测,物联网会通过可穿戴设备和传感器实现主动的医疗保健参与,这将是2021年物联网应用的一大趋势。

Forrester认为,消费者将在2021年获得更多种类的无线连接。不仅有5G和移动物联网设备,蓝牙、Zigbee和近场通信(NFC)都在解决类似的物联网使用案例。Forrester的报告指出。诸如可穿戴设备和传感器之类的互动和主动参与将激增,它们可以检测患者在家中的 健康 状况。COVID-19之后的医疗保健将以数字医疗经验为主导,并将提高虚拟医疗的有效性。在家中监视的便利性将激发消费者对数字 健康 设备的赞赏和兴趣,因为他们可以对自己的 健康 有更深入的了解。数字医疗设备的价格将变得对消费者更加友好。

由于新冠肺炎疫情,迫使许多患者留在家里或延误了必要的护理,这使慢性病得不到控制,可预防的病得不到重视。医疗机构可以利用接入物联网的医疗设备增进对患者 健康 的了解,跟踪个性化医疗的结果。

另一方面,智能办公的利用率也会大大增长,Forrester期望至少80%的公司为未来的办公室制定全面的战略,其中包括IoT应用程序以增强员工安全性并提高资源效率,例如智能照明、电源、能源、环境监控和基于传感器的空间利用率等。高流量区域的活动监视对于优先进行站点清洁,管理拥挤区域以及修改办公室布局以实现 社会 疏远非常必要。

问题一:什么是大数据?大数据是什么意思? “大数据”是近年来IT行业的热词,大数据在各个行业的应用逐渐变得广泛起来,如2014年的两会,我们听得最多的也是大数据分析,那么,什么是大数据呢,大数据时代怎么理解呢,一起来看看吧。
大数据的定义。大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
大数据的特点。数据量大、数据种类多、 要求实时性强、数据所蕴藏的价值大。在各行各业均存在大数据,但是众多的信息和咨询是纷繁复杂的,我们需要搜索、处理、分析、归纳、总结其深层次的规律。
大 数据的采集。科学技术及互联网的发展,推动着大数据时代的来临,各行各业每天都在产生数量巨大的数据碎片,数据计量单位已从从Byte、KB、MB、 GB、TB发展到PB、EB、ZB、YB甚至BB、NB、DB来衡量。大数据时代数据的采集也不再是技术问题,只是面对如此众多的数据,我们怎样才能找到 其内在规律。
大数据的挖掘和处理。大数据必然无法用人脑来推算、估测,或者用单台的计算机进行处理,必须采用分布式计算架构,依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术,因此,大数据的挖掘和处理必须用到云技术。
互联网是个神奇的大网,大数据开发也是一种模式,你如果真想了解大数据,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。
大 数据的应用。大数据可应用于各行各业,将人们收集到的庞大数据进行分析整理,实现资讯的有效利用。举个本专业的例子,比如在奶牛基因层面寻找与产奶量相关 的主效基因,我们可以首先对奶牛全基因组进行扫描,尽管我们获得了所有表型信息和基因信息,但是由于数据量庞大,这就需要采用大数据技术,进行分析比对, 挖掘主效基因。例子还有很多。
大数据的意义和前景。总的来说,大数据是对大量、动态、能持续的数据,通过运 用新系统、新工具、新模型的挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可能会一叶障目、可见一斑,因此不能了解到事物的真正本 质,从而在科学工作中得到错误的推断,而大数据时代的来临,一切真相将会展现在我么面前。
商业智能的技术体系主要有数据仓库(Data Warehouse,DW)、联机分析处理(OLAP)以及数据挖掘(Data Mining,DM)三部分组成。
数据仓库是商业智能的基础,许多基本报表可以由此生成,但它更大的用处是作为进一步分析的数据源。所谓数据仓库(DW)就是面向主题的、集成的、稳定的、不同时间的数据 ,用以支持经营管理中的决策制定过程。多维分析和数据挖掘是最常听到的例子,数据仓库能供给它们所需要的、整齐一致的数据。
在线分析处理(OLAP)技术则帮助分析人员、管理人员从多种角度把从原始数据中转化出来、能够真正为用户所理解的、并真实反映数据维特性的信息,进行快速、一致、交互地访问,从而获得对数据的更深入了解的一类软件技术。
数据挖掘(DM)是一种决策支持过程,它主要基于AI、机器学习、统计学等技术,高度自动化地分析企业原有的数据,做出归纳性的推理,从中挖掘出潜在的模式,预测客户的行为,帮助企业的决策者调整市场策略,减少风险,做出正确的决策。
商业智能的应用范围
1采购管理
2财务管理
3人力资源管理
4客户服务
5配销管>>

问题二:什么是大数据 大数据是什么意思 “大数据”不是“数据分析”的另一种说法!大数据具有规模性、高速性、多样性、而且无处不在等全新特点,具体地说,是指需要通过快速获取、处理、分析和提取有价值的、海量、多样化的交易数据、交互数据为基础,针对企业的运作模式提出有针对性的方案。由于物联网和智能可穿戴的普及带来的,生产线上普通的蓝领员工,前台电话员,等企业内的低阶员工也成为产生大数据的数据内容的一部分,数据的产生除了来自社交网络,网站,电子商务网站,邮箱外,智能手机,各种传感器,和物联网,智能可穿戴设备。
大数据营销与传统营销最显著的区别是大数据可以深入到营销的各个环节,使营销无处不在。如用户的偏好?上网的时间段?上网主要浏览页?对页面和产品的点击次数?网站上的用户评价对他的影响?他会在哪些地方分享对产品和购物过程的体验?这些都是对用户网上消费和品牌关注度的深入分析,可以直接影响用户消费的倾向等商业效果。
大数据彻底改变企业内部运作模式,以往的管理是“领导怎么说?”现在变成“大数据的分析结果”,这是对传统领导力的挑战,也推动企业管理岗位人才的定义。不仅懂企业的业务流程,还要成为数据专家,跨专业的要求改变过去领导力主要体现在经验和过往业绩上,如今熟练掌握大数据分析工具,善于运用大数据分析结果结合企业的销售和运营管理实践是新的要求。
当然大数据对企业的作用一个不可回避的关键因素是数据的质量,有句话叫“垃圾进,垃圾出”指的是如果采集的是大量垃圾数据会导致出来的分析结果也是毫无意义的垃圾。此外,企业内部是否会形成一个个孤立的数据孤岛,数据是否会成就企业内某些人或团队新的权力,导致数据不能得到实时有效地分享,这些都会是阻碍大数据在企业中有效应用的因素。
而随着大数据时代的到来,对大数据商业价值的挖掘和利用逐渐成为行业人士争相追捧的利润焦点。业内人士称,电商企业通过大数据应用,可以探索个人化、个性 化、精确化和智能化地进行广告推送和推广服务,创立比现有广告和产品推广形式性价比更高的全新商业模式。同时,电商企业也可以通过对大数据的把握,寻找更 多更好地增加用户粘性,开发新产品和新服务,降低运营成本的方法和途径。

问题三:什么是“大数据”的真正含义 大讲台大数据 在线培训为你解答:大数据(bigdata),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据 ,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。

问题四:大数据是什么含义 大数据的意思就是数据要在线,这样你的数据才能有价值,用于分析或者处理。大量的数据在线后的分析才有意义。

问题五:大数据是什么意思 大数据是指整个分析运营的各个方面的数据整合。特别是指互联网带来的整个方方面的物流 信息流 资金流都在数据分析下整合
希望你能接受这个答案。

问题六:大数据是什么意思? 大数据(big data),是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据 。大数据是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的加工能力,通过加工实现数据的增值。

问题七:大数据的概念是什么意思 什么是大数据概念?
大数据(big data,mega data),或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托・迈尔-舍恩伯格及肯尼斯・库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘,但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。《著云台》的分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。

问题八:大数据的含义包括哪些 大数据(英语:Big data[1][2]或Megadata),或称巨量数据、海量数据、大资料,指的是所涉及的数据量规模巨大到无法通过人工,在合理时间内达到截取、管理、处理、并整理成为人类所能解读的信息。
在总数据量相同的情况下,与个别分析独立的小型数据集(data
set)相比,将各个小型数据 并后进行分析可得出许多额外的信息和数据关系性,可用来察觉商业趋势、判定研究质量、避免疾病扩散、打击犯罪或测定实时交通路况等;这样的用途正是大型数据集盛行的原因。
大数据的应用示例包括大科学、RFID、感测设备网络、天文学、大气学、基因组学、生物学、大社会数据分析、互联网文件处理、制作互联网搜索引擎索引、通信记录明细、军事侦查、社交网络、通勤时间预测、医疗记录、照片图像和视频封存、大规模的电子商务等。

问题九:什么是大数据?有什么意义? 大数据就是大量的数据,通过分析找出他们的规律

问题十:什么是大数据,大数据的意义是什么? 大数据的意思就是数据要在线,这样你的数据才能有价值,用于分析或者处理。大量的数据在线后的分析才有意义。可能得到你想要的数据,里好多这种素材,比如人脸的搜索,人员的定位,人流的分析,运行的状态等等都有使用。现在做这些应用的也很多,只是落地的还稍微少一点。还是为了创造价值。

物联网的应用如下:
1、智能仓库。物联网一个很好的应用。它能准确的提供仓库管理各个环节数据的真实性,对于生产企业,可以根据这个数据合理的把控库存量,调整生产量。物联网中利用SNHGES系统的库位管理功能,可以准确提供货物库存位置,这就大大提高了仓库管理的效率。
2、智能物流。运用条形码、传感器、射频识别技术、全球定位等先进的物联网通信技术,实现物流业运输、仓储、配送、装卸等各个环节的智能化。不仅货物运输更加的自动化,而且作出的全面分析还能及时的处理问题对物流过程作出调整,优化了管理。大大提高了物流行业的服务水平,还节约了成本。
3、智能医疗。利用物联网技术,实现患者和医务人员、医疗机构、医疗设备的互动,实现医疗智能化。物联网医疗设备中的传感器与移动设备可以对患者的生理状态进行捕捉,把生命指数记录到电子健康文件中,不仅自己可以查看,也方便了医生的查阅,实现远程的医疗看病。很好的解决当前的医疗资源分布不均,看病难的问题。
4、智能家庭。物联网的出现让我们的日常生活更加的便捷。不远的将来一台手机,就可以 *** 作家里大多数的电器,查看它们的运行状态。寒冷的冬天,我们可以提前打开家里的空调,回到家就暖暖的。物联网还能准确的定位家庭成员的位置,你再也不用担心孩子跑的找不见人,省心省力。
5、智能农业。物联网在农业中的应用就更加的广泛。监测温湿度,监视土壤酸碱度,查看家禽的状态。在这些数据的支持下,农户就可以合理进行科学评估,安排施肥,灌溉。监测到的天气情况比如降水,风力等又为我们抗灾、减灾提供了依据。提高了产量,降低了减产风险。
6、智能交通。物联网将整个交通设备连在一起。主要是用图像识别为核心技术。可以准确的收集到交通车流量信息,通过信号灯等设备进行流量的控制,这个技术的运用,会让堵车成为历史。管理人员利用这个技术能将道路、车辆的情况掌握的一清二楚,驾驶违章无处可逃,交通事故也能及时的得到处理。人们的出行得到了很大的方便。
7、智能电力。电力工程是一项重大的民生工程,对电网的安全检测是一项必修科目。以南方电网与中国移动通过M2M技术进行的合作为例,因为物联网的运用,使得自动化计量系统开始启动,使得故障评价处理时间得到一倍的缩减。


欢迎分享,转载请注明来源:内存溢出

原文地址:https://54852.com/dianzi/13134286.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2025-08-30
下一篇2025-08-30

发表评论

登录后才能评论

评论列表(0条)

    保存