bm官网进不去

bm官网进不去,第1张

如果您无法访问BM官网,这可能是由于以下原因之一:
1 网站维护:BM官网正在进行升级或维护,因此暂时关闭了访问权限。
2 网络问题:您的网络连接可能存在问题,尝试刷新页面或者尝试使用其他网络连接。
3 地区限制:有些国家和地区可能出于政策原因禁止访问特定网站。
建议您先确认是否存在网络连接问题,在尝试刷新页面或者更改网络连接。如果仍然无法访问,请稍后再尝试。同时,您也可以联系BM官方客服团队以获得更多帮助。

BSC指的是基站控制器(Base Station Controller)。
它是基站收发台和移动交换中心之间的连接点,也为基站收发台(BTS)和移动交换中心(MSC)之间交换信息提供接口。一个基站控制器通常控制几个基站收发台,其主要功能是进行无线信道管理、实施呼叫和通信链路的建立和拆除,并为本控制区内移 动台的过区切换进行控制等。
一般由以下模块组成:
AM/CM模块:话路交换和信息交换的中心。
BM模块:完成呼叫处理、信令处理、无线资源管理、无线链路的管理和电路维护功能。
TCSM模块:完成复用解复用及码变换功能。
具体信息可参考移动通讯相关知识。
基站控制器(BSC):BSC控制一组基站,其任务是管理无线网络,即管理无线小区及其无线信道,无线设备的 *** 作和维护,移动台的业务过程,并提供基站至MSC之间的接口。将有关无线控制的功能尽量的集中到BSC上来,以简化基站的设备,这是GSM的一个特色。它的功能列表如下:
1 无线基站的监视与管理,RBS资源由BSC控制,同时通过在话音信道上的内部软件测试及环路测试,BSC还可监视RBS的性能。爱立信的基站采用内部软件测试及环路测试在话音通道上对TRX进行监视。若检测出故障,将重新配置RBS,激活备用的TRX,这样原来的信道组保持不变。
2 无线资源的管理,BSC为每个小区配置业务及控制信道,为了能够准确的进行重新配置,BSC收集各种统计数据。比如损失呼叫的数量,成功与不成功的切换,每小区的业务量,无线环境等,特殊记录功能可以跟踪呼叫过程的所有事件,这些功能可检测网络故障和故障设备。
3 处理与移动台的连接,负责与移动台连接的建立和释放,给每一路话音分配一个逻辑信道,呼叫期间,BSC对连接进行监视,移动台及收发信机测量信号强度及话音质量,测量结果传回BSC。由BSC决定移动台及收发信机的发射功率,其宗旨是即保证好的连接质量,又将网络内的干扰降低到最小。
4 定位和切换,切换是由BSC控制的,定位功能不断的分析话音接续的质量,由此可作出是否应切换的决定,切换可以分为BSC内切换,MSC内BSC间的切换,MSC之间的切换。一种特殊切换称为小区内切换,当BSC发现某连接的话音质量太低,而测量结果中又找不到更好的小区时,BSC就将连接切换到本小区内另外一个逻辑信道上,希望通话质量有所改善。切换同时可以用于平衡小区间的负载,如果一个小区内的话务量太高,而相邻小区话务量较小,信号质量也可以接受,则会将部分通话强行切换到其它的小区上去。
5 寻呼管理,BSC负责分配从MSC来的寻呼消息,在这一方面,它其实是MSC和MS之间的特殊的透明通道。
6 传输网络的管理,BSC配置、分配并监视与RBS之间的64KBPS电路,它也直接控制RBS内的交换功能。此交换功能可以有效的使用64K的电路。
7 码型变换功能,将四个全速率GSM信道复用成一个64K信道的话音编码在BSC内完成,一个PCM时隙可以传输4个话音连接。这一功能是由TRAU来实现的。
8 话音编码。
9 BSS的 *** 作和维护,BSC负责整个BSS的 *** 作与维护。诸如系统数据管理,软件安装,设备闭塞与解闭,告警处理,测试数据的采集,收发信机的测试。
RnC 无线网络控制器定义 无线网络控制器(RNC,Radio Network Controller)是新兴3G网络的一个关键网元。它是接入网的组成部分,用于提供移动性管理、呼叫处理、链接管理和切换机制。为了实现这些功能,RNC必须利用出色的可靠性和可预测的性能,以线速执行一整套复杂且要求苛刻的协议处理任务。 作为3G网络的重要组成部分,无线网络控制器(RNC)是流量汇集、转换、软硬呼叫转移(soft and hard call handoffs)、及智能小区和分组处理的重点。无线网络控制器(RNC)的高级任务包括1) 管理用于传输用户数据的无线接入载波;2) 管理和优化无线网络资源;3) 移动性控制;和4) 无线链路维护。 无线网络控制器(RNC)具有组帧分配(framing distribution)与选择、加密、解密、错误检查、监视、以及状态查询等功能。无线网络控制器(RNC)还可提供桥接功能,用于连接IP分组交换网络。无线网络控制器(RNC)不仅支持传统的ATM AAL2(语音)和AAL5(数据)功能,而且还支持IP over ATM(IPoATM)和SONET上的数据包(POS)功能。无线用户的高增长率对IP技术提出了更高的要求,这意味着未来平台必须要能够同时支持IPv4和IPv6。 RNC在典型UMTS R99网络中的位置如图二所示。注意,实际网络传输将取决于运营商(carrier)的情况。在R99中,RNC与节点B之间通常有一个SONET环,其功能相当于城域网(MAN)。通过分插复用器(ADM),可从SONET环提取或向SONET环加入数据流。这一拓扑结构允许多个RNC接入多个节点B,以形成具有出色灵活性的网络。
RNC网络接口参考点 无线网络控制器(RNC)可使用表1中描述的定义明确的标准接口参考点连接到接入网和核心网中的系统。 由于RNC支持各种接口和协议,因此可被视作一种异构网络设备。它必须能够同时处理语音和数据流量,还要将这些流量路由至核心网中不同的网元。无线网络控制器(RNC)还必须能够支持IP与ATM实现互 *** 作,向仅支持IP的网络生成POS流量。因此,RNC必须要能够支持广泛的网络I/O选件,同时提供规范、转换和路由不同网络流量所需的计算和协议处理,而且所有这些处理不能造成呼叫中断,并要提供合适的服务质量。 接口 说明
Lub 连接节点B收发信机和无线网络控制器(RNC)。这通常可通过T-1/E-1链路实现,该链路通常集中在T-1/E-1聚合器中,通过OC-3链路向RNC提供流量。
Lur 用于呼叫切换的RNC到RNC连接,通常通过OC-3链路实现。
lu-cs RNC与电路交换语音网络之间的核心网接口。通常作为OC-12速率链路实施。
lu-ps RNC与分组交换数据网络之间的核心网接口。通常作为OC-12速率链路实施。
表1 接口参考点 无线网络控制器(RNC)的要求 两种有助于开发商满足严格的无线网络控制器(RNC)要求的技术是ATCA和英特尔®IXP2XXX网络处理器。后者基于英特尔互联网交换架构(英特尔IXA)和英特尔XScale®技术,专为提供高性能和低功耗而设计。 ATCAATCA是由PCI工业计算机制造商协会(PICMG)开发的一项行业计划。该设计用于满足网络设备制造商对平台再利用、更低成本、更快上市速度和多元灵活性的要求,以及运营商和服务提供商对降低资本和运营支出的要求。ATCA通过制定标准机箱外形、机箱内部互连、以及适合高性能、高带宽计算和通信解决方案的平台管理接口,满足了以上要求。如欲了解有关ATCA的更多信息,请访问:>汽车上的总线技术包括:LIN、CAN、CAN FD、FlexRay、MOST及Ethernet,我们之前已经分享了LIN,CAN、CAN FD总线。在开始阅读之前,如果你对已介绍的总线技术还不了解的话,可以先阅读以下文章快速温习一下~
说一说LIN总线
CAN总线基础(一)
CAN总线基础(下)
CAN FD 介绍
FlexRay背景
随着汽车电子技术的不断发展和系统的集成化,我们可不需要传统的机械传递控制信号而是通过电子手段来驾驶汽车,而这一电子手段即X-By-Wire(X代表汽车中的各个系统,By-Wire可称为电子线控),如线控转向(Steering-By-Wire),线控制动(Brake-By-Wire),线控技术主要应用在主动安全等关键系统中,这些场合都对信息的实时性和安全性有很高的要求。
另一方面随着汽车电子电器架构复杂度的提升尤其当前辅助驾驶系统、无人驾驶技术的快速发展,传统的LIN、CAN总线已不堪重负且无法满足未来高带宽的要求,
上期讲的CAN FD只是对传统CAN总线的一种扩展和过渡,首先其不会对原有的整车网络带来大的变更,具备很好的兼容性又具有不错的传输速率(最高2Mbps),其次LIN CAN总线在汽车上已应用了这么多年,若突然向新的总线技术迁移(如本期讲的FlexRay)会带来开发迁移量、时间成本、硬件成本等方面的同步提升(所有节点必须升级为FlexRay节点),因此CAN FD在当前阶段是很好的过渡方案。但当同时考虑X-By-Wire应用场景和更高的带宽要求时,CAN FD则无法满足,而FlexRay则非常适用,但FlexRay的应用对OEM的能力要求相比CAN会提高很多。
FlexRay联盟
FlexRay的出现和发展离不开2000年由Daimler Crysler 、 BMW 、Motorola 和Philips创建的FlexRay联盟的推动。该联盟的目标是开发一种独立于OEM、确定性和容错的FlexRay通信标准,该联盟的每个成员都可以使用该标准而无需支付许可费。目前FlexRay联盟的核心成员包括:BOSCH 、BMW、Daimler AG、General Motors、Volkswagen AG、NXP Semiconductors。
FlexRay联盟在2010年发布了301版规范,开始推动作为ISO标准,并在2013年发布了ISO 17458标准规范。
第一款采用FlexRay的量产车于2006年底在BMW X5中推出,应用在电子控制减震系统中,2008年,全新BMW 7系全面采用了FlexRay。另外Audi、Mercedes-Benz以及领克等车型上也逐渐应用。
FlexRay通讯特点及拓扑
FlexRay是专为车内局域网设计的一种具备故障容错的高速可确定性车载总线系统,采用了基于时间触发的机制且具有高带宽、容错性好等特点,在实时性、可靠性及灵活性方面都有很大的优势,非常适用于安全性要求较高的线控场合及带宽要去高的场合。
1、高速率和容错性
FlexRay支持两通道,可通过一个或两个通道进行数据传输,单个通道的数据传输速率可达10Mbps,通过两通道平行传输数据时可达20Mbps。也可通过双通道传输相同的数据(真实情况大多应用的方式),当其中某个通道出现故障或信息有误时,另一通道可继续正常传输,并影响整个网络的数据通讯,通过这种冗余备份实现很好的容错性。
2、确定性
FalexRay是一种时间触发式的总线系统,符合TDMA(Time Division Multiple Access)的原则,因此在时间控制区域内,时隙会分配给确定的消息,即会将规定好的时间段分配给特定的消息,时隙是经固定周期重复,也就是说信息在总线上的时间可以被预测出来,因此保证了其确定性。这就意味着控制信号是根据预定义的时间进度传输的,无论系统外部发生什么情况,都不会产生计划外事件。在确定性算法中,始终会预先定义正确的输出结果,这些结果是基于特定输入的。
3、灵活性
FlexRay除了支持时间触发式通讯外,还可通过事件触发来进行数据的传输,例如对于时间要求不高的信息,可配置在事件控制区域内传输,可形成以时间触发为主,兼顾事件触发的灵活特性。
此外,FlexRay的拓扑是多样的,有线型、星型和混合型三大类,再结合单通道和双通道的使用(FlexRay的两个通道可相互独立实现,所以两个通道可采用不同的拓扑结构,如一个通道为主动星型拓扑,另一个为总线拓扑结构),所以最终组合的结果可形成很多种。再例如既有点对点的线性结构和多节点的线性结构,还有增加冗余性的双通道星型拓扑结构等等。
FlexRay数据传输
FlexRay规范定义了OSI参考模型中的物理层和数据链路层,每个FlexRay节点通过一个FlexRay Controller和两个FlexRay Transceivers(用于通道冗余)与总线相连,FlexRay Controller负责Flexray协议中的数据链路层,FlexRay Transceivers则负责总线物理信号接收发送。
FlexRay可采用屏蔽或不屏蔽的双绞线,每个通道有两根导线,即总线正(Bus-Plus,BP)和总线负(Bus-Minus,BM)组成。采用不归零法(NRZ,Non-Return to Zero)进行编码。
可通过测量BP和BM之间的电压差识别总线状态,这样可减少外部干扰对总线信息的影响,因这些干扰同时作用在两根导线上可相互抵消。
每一通道需使用80~110欧的终端电阻。将不同的电压加载在一个通道的两根导线上,可使总线有四种状态:Idle_Lp(Low power)、Idle、Data_0和Data_1
显性:差分电压不为0V(Data_0和Data_1)
隐性:差分电压为0V(Idle_Lp、Idle)
FlexRay帧格式
FlexRay帧由起始段、有效负载段和结束段三大部分构成。
1、起始段:由40个bits构成(5 bytes),包括
-Status Bits-5bits
-Frame ID-11bits
-Payload Length-7 bits
-Hedaer CRC-11bits
-Cycle count -6 bits
其中5bits的Status Bits包含四类指示符:
净荷指示位(Payload Preamble Indicator)
空帧指示位(Null Frame Indicator-指明该帧是否为无效帧)
同步帧指示位(Sync Frame Indicator-指明该帧是否为一个同步帧)
起始帧指示位(Startup Frame Indicator-指明该帧是否为起始帧)。
Frame ID:数据标志符,定义了在时间窗口(Slot)中发送的号码,每个通道数据标志符需唯一。
Payload Length:工作区长度,指示该帧含有的有效数据长度,在每个Cycle下的静态区中,每帧的数据长度是相同的,在动态区的长度则是不同的。
Hedaer CRC:用于起始段冗余校验,检查传输中的错误。
Cycle count:循环计数器。
2、有效负载段
包含要传输的有效数据,有效数据长度最大254个Bytes(0~127个Words),
3、结束段
包含24  Bits的检验域,由起始段和有效负载段计算得出的CRC校验码,计算CRC时,根据网络传输顺序从保留位到有效负载段的最后一位放到CRC生成器中进行计算。
FlexRay编码
编码的过程实际就是对要发送的数据进行一定的打包处理,即在节点可传输带有主计算机数据的数据前需将其转换为“比特流(Bitstream)”。
RxD为接收信号,TxD为发送信号,TxEN为通讯控制器请求数据,对于静态帧和动态帧分别按照如下方式进行编码。
其中TSS(传输启动序列):用于初始化节点和网络通讯的对接(5~15位的低电平);FSS(帧启动序列):用于补偿TSS后第一个字节可能出现的量化误差(一位高电平);BSS(字节启动序列):给接收节点提供数据定时信息(一位高电平并紧随一位低电平);FES(帧结束序列):用于标识数据帧最后一个字节序列结束(一位低电平紧随一位高电平)。
对于动态区数据还额外需要DST(动态段尾部序列):仅用于动态帧传输,用于表明动态段中传输时动作点的精确时间防止接收段过早检测到网络空闲状态(一位长度可变的低电平和高电平)。
将这些序列和有效位(MSB到LSB)组装起来完成了编码过程,最终构成在网络传播的比特流。
FlexRay通讯
FlexRay总线的通讯由通讯周期(Communication Cycle)构成,从总线启动到停止都在不断重复该通讯周期。每个通讯周期具有相同的可配置时间间隔,且每个通讯周期由下面四部分构成:
静态段(Static Segment)
动态段(Dynamic Segment)
特征窗(Symblo Window)
网络空闲时间(Network Idle Time)
1、静态段(Static Segment)
静态段采用TDMA(Time Division Multiple Access)方式由固定的时隙(Slot)组成,不可更改且所有时隙大小一致。
因此每个节点可拥有一个或多个Slots,这样每个节点在每个通讯周期内都可在其所占有的Slot内发送,两个节点也可在不同的通道上共享同一Slot,单个Slot也可为空(即不被任何节点占用),所有的帧和Slots在静态段都具有相同的长度。单个Slot的长度由总线中最长的FlexRay Message决定,其包括四部分:Action Point Offset、FlexRay Frame、Channel Idle Delimiter(11个隐性位)和Channel Idle。
2、动态段(Dynamic Segment)
动态段采用FTDMA(Flexible Time Division Multiple Access)方式,由较小的时隙(Minislot)组成,可根据需要拓展变动,一般用于传输事件控制型消息。
在动态段每帧可能有不同的长度,动态时隙(Dynamic Slot)的长度依赖于帧的长度,只有空的Slot才是实际的一个Minislot的大小。
3、特征窗(Symblo Window)
用于传输特征符号,FlexRay的符号有三种:
冲突避免符号:用于冷启动节点的通讯启动
测试符号:用于总线的测试
唤醒符号:用于唤醒过程的初始化
4、网络空闲时间(NIT-Network Idle Time)
用于时钟同步处理
如下是一个通讯示例:
FlexRay总结
从上面可看出,FlexRay相比传统LIN、 CAN和CAN FD要更复杂一些,因此不管对OEM还是供应商的能力要求势必提高不少,其次从传统总线技术向FlexRay迁移在成本及Effort上都要增加很多,普遍应用仍需要时间。
参考文献:
1、FlexRay introduction(EB、Vector、BOSCH等资料)
 FlexRay 介绍 (qqcom)
物联网
华云数据
精选推荐
广告
FlexRay车载通信协议介绍及其应用
39下载·1评论
2013年4月21日
FlexRay总线协议快速入门、深度剖析与应用示例
11W阅读·11评论·15点赞
2020年1月12日
FlexRay 总线详细介绍
555阅读·0评论·0点赞
2022年11月28日
汽车 Flexry总线-笔记
995阅读·0评论·0点赞
2020年8月4日
FlexRay学习笔记_2
1006阅读·0评论·0点赞
2020年1月6日
FlexRay笔记
2343阅读·0评论·4点赞
2018年6月25日
迎春手机就能学,还是免费的!爆款理财课送给你,0元收藏!
00:45
免费的理财课
广告
Flexray基础解读
1619阅读·4评论·2点赞
2022年7月5日
汽车通信协议:一文搞懂Flexray通信
7101阅读·4评论·23点赞
2022年4月18日
FlexRay介绍
18W阅读·0评论·1点赞
2018年6月2日
FlexRay总线概述(2)
54阅读·0评论·0点赞
2023年1月27日
FlexRay总线技术介绍
53下载·0评论
2012年7月3日
基于FlexRay总线的汽车网关
17下载·0评论
2013年8月20日
FlexRay
5771阅读·0评论·4点赞
2018年2月27日
FlexRay总线原理及应用
8343阅读·0评论·10点赞
2021年11月15日
FlexRay汽车通信总线介绍及测试环境
5909阅读·0评论·2点赞
2020年3月31日
FlexRay最新通信协议及FlexRay总线通信设计及控制资料
46下载·0评论
2020年7月14日
Capl之FlexRay脚本id的大致解读
151阅读·0评论·1点赞
2022年12月20日
国产FlexRay系列产品即将上市,值得期待!
299阅读·1评论·0点赞
2022年11月14日
去首页
看看更多热门内容


欢迎分享,转载请注明来源:内存溢出

原文地址:https://54852.com/dianzi/12967756.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2025-08-29
下一篇2025-08-29

发表评论

登录后才能评论

评论列表(0条)

    保存