物联网大数据有什么特征?

物联网大数据有什么特征?,第1张

1高效分布式


必须是高效的分布式系统。物联网产生的数据量巨大,仅中国而言,就有5亿多台智能电表,每台电表每隔15分钟采集一次数据,一天全国智能电表就会产生500多亿条记录。这么大的数据量,任何一台服务器都无能力处理,因此处理系统必须是分布式的,水平扩展的。为降低成本,一个节点的处理性能必须是高效的,需要支持数据的快速写入和快速查询。


2实时处理


必须是实时处理的系统。互联网大数据处理,大家所熟悉的场景是用户画像、推荐系统、舆情分析等等,这些场景并不需要什么实时性,批处理即可。但是对于物联网场景,需要基于采集的数据做实时预警、决策,延时要控制在秒级以内。如果计算没有实时性,物联网的商业价值就大打折扣。


3高可靠性


需要运营商级别的高可靠服务。物联网系统对接的往往是生产、经营系统,如果数据处理系统宕机,直接导致停产,产生经济有损失、导致对终端消费者的服务无法正常提供。比如智能电表,如果系统出问题,直接导致的是千家万户无法正常用电。因此物联网大数据系统必须是高可靠的,必须支持数据实时备份,必须支持异地容灾,必须支持软件、硬件在线升级,必须支持在线IDC机房迁移,否则服务一定有被中断的可能。


4高效缓存


需要高效的缓存功能。绝大部分场景,都需要能快速获取设备当前状态或其他信息,用以报警、大屏展示或其他。系统需要提供一高效机制,让用户可以获取全部、或符合过滤条件的部分设备的最新状态。


5实时流式计算


需要实时流式计算。各种实时预警或预测已经不是简单的基于某一个阈值进行,而是需要通过将一个或多个设备产生的数据流进行实时聚合计算,不只是基于一个时间点、而是基于一个时间窗口进行计算。不仅如此,计算的需求也相当复杂,因场景而异,应容许用户自定义函数进行计算。


6数据订阅


需要支持数据订阅。与通用大数据平台比较一致,同一组数据往往有很多应用都需要,因此系统应该提供订阅功能,只要有新的数据更新,就应该实时提醒应用。而且这个订阅也应该是个性化的,容许应用设置过滤条件,比如只订阅某个物理量五分钟的平均值。

最早提出“大数据”时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。” “大数据”在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,却因为近年来互联网和信息行业的发展而引起人们关注。大数据作为云计算、物联网之后IT行业又一大颠覆性的技术革命。云计算主要为数据资产提供了保管、访问的场所和渠道,而数据才是真正有价值的资产。企业内部的经营交易信息、互联网世界中的商品物流信息,互联网世界中的人与人交互信息、位置信息等,其数量将远远超越现有企业IT架构和基础设施的承载能力,实时性要求也将大大超越现有的计算能力。如何盘活这些数据资产,使其为国家治理、企业决策乃至个人生活服务,是大数据的核心议题,也是云计算内在的灵魂和必然的升级方向。

物联网简单来说就是:人与物,物与物之间的连接,当这些连接可以接入互联网时,就是物联网。比如说:你有一个手环,这个手环可以监测血糖血脂血压,如果监测的数据不能接入互联网,它也只是一个监测仪,一旦这些数据接入互联网,可以对你的健康做出分析评估,这便成为了物联网的一部份。再比如:空调可以根据温度自动调节风力,如果没有接入互联网,这也只是空调的自动模式,如果把空调监测到的数据接入互联网,通过智能音箱给你播报,或是发消息到你手机,这就是物联网。
希望这些可以帮到你。

物联网数据具有以上12个特点

物联网是通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物体与因特网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。

物联网这一概念提出已有20多年,但受全球各国重视是2008年和2009年这两年,各国纷纷推出物联网相关政策,我国也开启了物联网发展里程碑的年份,列为国家五大新兴战略性产业之一。经过10年发展,物联网已不再是高高在上的概念,在云+AI等技术加持下,让物联网得到了广泛应用,产业发展迅猛,也迎来了黄金发展时代。

运营商、半导体厂商、通信设备、云服务商和应用端等形成物联网产业链,而NB-IoT和LoRa等LPWA低功耗广域网通信技术,解决物联网大规模部署连接等需求,继而使得物联网在工业、零售、物流和交通等垂直领域得到广泛应用。

在产业链积极推动下,物联网连接规模成倍速度增长,LPWAN连接的复合年增长率为109%。此外物联网高级顾问杨剑勇指出,5G技术部署,也将把物联网带上更高的层次,也让万物互联成为可能,其中运营商是万物互联积极推动者,全球运营商纷纷转型寄望于在大连接时代,不再局限做一个管道提供者,希望能抢夺物联网应用端市场,例如面向工业、教育、医疗、车联网和智慧家庭等应用场景寻求机遇。

物联网在移动监测、智能可穿戴、POS机、气象、医疗和能源等行业用途很大,而且是实现设备联网不可或缺的产品,不少相关的top域名都被注册。

物联网是物物相连的互联网,核心基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;大数据是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。据 IDC 的调查报告显示:企业中 80%的数据都是非结构化数据,这些数据每年都按指数增长 60%。
大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。

物联网的缺点是:

1、安全性:物联网系统互联互通,通过网络进行通信。 尽管采取了任何安全措施,系统几乎不提供任何控制,并且可以引发各种网络攻击。

2、隐私:即使没有积极参与用户,物联网系统也能提供最详细的大量个人数据。

3、复杂性:设计,开发,维护和支持大型技术到物联网系统是相当复杂的。

扩展资料

物联网的优点:

1、高效的资源利用:如果了解每个设备的功能和工作方式,会提高资源的有效利用率并监控自然资源。

2、最大限度地减少人力:当物联网设备相互交互并相互通信并完成大量任务时,它们可以最大限度地减少人力。

3、节省时间:因为它减少了人力,所以它绝对节省了时间。 时间是通过物联网平台可以节省的主要因素。

4、增强数据收集:联网并收集相关数据。

5、提高安全性:系统能够将所有这些内容相互连接,那么就可以使系统更安全,更高效。

大数据
不是
抽样数据,而是全部的数据;
所以大数据必须依赖云计算,不可能是局域网的;
物联网目标是把所有的物体都连接到互联网,并把物体虚拟化,数据上传,自然就是大数据了。
云计算是为了大并发、大数据下的解决实际运算问题;
大数据是为了解决海量数据分析问题;
物联网是解决设备与软件的融合问题;
可见,它们之间的关系是互相关联、互相作用的:
物联网是很多大数据的来源(设备数据),而大量设备数据的采集、控制、服务要依托云计算,设备数据的分析要依赖于大数据,而大数据的采集、分析同样依托云计算,物联网反过来能为云计算提供issa层的设备和服务控制,大数据分析又能为云计算所产生的运营数据提供分析、决策依据。

物联网与大数据的关系是:

大数据的发展源于物联网技术的应用,并用于支撑智慧城市的发展。物联网技术作为互联网应用的拓展,正处于大发展阶段。

物联网是智慧城市的基础,但智慧城市的范畴相比物联网而言更为广泛;智慧城市的衡量指标由大数据来体现,大数据促进智慧城市的发展;物联网是大数据产生的催化剂,大数据源于于物联网应用。

物联网是指通过 各种信息传感器、射频识别技术、全球定位系统、红外感应器、激光扫描器等各种装置与技术,实时采集任何需要监控、 连接、互动的物体或过程。

采集其声、光、热、电、力学、化 学、生物、位置等各种需要的信息,通过各类可能的网络接入,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。

物联网是一个基于互联网、传统电信网等的信息承载体,它让所有能够被独立寻址的普通物理对象形成互联互通的网络。

大数据技术是一种新一代技术和构架,它以成本较低、以快速的采集、处理和分析技术,从各种超大规模的数据中提取价值。

大数据技术不断涌现和发展,让我们处理海量数据更加容易、更加便宜和迅速,成为利用数据的好助手,甚至可以改变许多行业的商业模式。

大数据(big data)是这样的数据集合:数据量增长速度极快,用常规的数据工具无法在一定的时间内进行采集、处理、存储和计算的数据集合。

云计算是一种基于因特网的超级计算模式,在远程的数据中心里,成千上万台电脑和服务器连接成一片电脑云。

因此,云计算甚至可以让你体验每秒10万亿次的运算能力,拥有这么强大的计算能力可以模拟核爆炸、预测气候变化和市场发展趋势。用户通过电脑、笔记本、手机等方式接入数据中心,按自己的需求进行运算。

云计算的就业前途,某种意义上也可以理解为云计算为我们提供的服务,存在一定的必然性,也就是说云计算对于社会、云计算使用者有哪些优势,也同时可以理解为,云计算的优势就是云计算的就业优势。


欢迎分享,转载请注明来源:内存溢出

原文地址:https://54852.com/dianzi/12747532.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2025-08-27
下一篇2025-08-27

发表评论

登录后才能评论

评论列表(0条)

    保存